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More New Software Performance Antipatterns:
Even More Ways to Shoot Yourself in the Foot

Performance antipatterns document common software performance problems as well as
their solutions. These problems are often introduced during the architectural or design
phases of software development, but not detected until later in testing or deployment.
Solutions usually require software changes as opposed to system tuning changes. This
paper presents three new performance antipatterns and gives examples to illustrate them.
These antipatterns will help developers and performance engineers avoid common perfor-

mance problems.

1.0 INTRODUCTION

Experienced performance specialists have seen the
same performance problems time after time. Each time
the problem is corrected but, when the next system is
implemented, the same (or a similar) set of perfor-
mance problems is found again.

This phenomenon is similar to one observed in the soft-
ware engineering community: certain implementations
which have negative consequences are found repeat-
edly as solutions to recurring design problems. For
example, when trying to solve the problem of coordi-
nating different subsystems within a single system,
developers often implement a stovepipe architecture.
This solution makes the system difficult to change and
expensive to maintain.

Brown and co-authors [Brown, et al. 1998] introduced
software antipatterns to document common software
development mistakes and their solutions. These anti-
patterns describe what to avoid and how to fix the prob-
lem if you encounter it. The antipatterns presented by
Brown and co-workers address both software architec-
ture and design issues but do not specifically address
performance.

Antipatterns are refactored (restructured or reorga-
nized) to overcome their negative consequences. A
refactoring is a correctness-preserving transformation
that improves the quality of the software. For example,
a data structure may be revised to improve the effi-
ciency of the retrieval processing. The transformation
does not alter the semantics of the application but it

improves performance. Refactoring may also be used
to enhance many other quality attributes such as reus-
ability and maintainability in addition to performance.
Refactoring is discussed in detail in [Fowler 1999].

Software antipatterns are an extension of the notion of
software architectural and design patterns. Patterns
document common solutions to frequently-occurring
software development problems [Schmidt, et al. 2000],
[Buschmann, et al. 1996], [Gamma, et al. 1995]. Archi-
tectural and design patterns capture expert knowledge
about “best practices” in software design by document-
ing general solutions that may be customized for a par-
ticular context. They make it possible to reuse that
knowledge in the development of many different types
of software. These patterns focus on quality attributes
such as reusability or modifiability but do not specifi-
cally address performance.

Recently, we introduced software performance patterns
and antipatterns [Smith and Williams 2002]. Perfor-
mance patterns describe “best practices” for develop-
ing responsive, scalable software. We extend the
notion of patterns to explicitly include performance con-
siderations.

Performance antipatterns document common perfor-
mance mistakes found in software architectures and
designs. The presence of these antipatterns may also
have negative impacts on other quality attributes but
they are not addressed here. Our experience is that
developers find performance antipatterns to be espe-
cially useful because they illustrate how to identify a
bad situation and provide a way to rectify the problem.



By illustrating common problems and their solutions,
performance antipatterns help build performance intu-
ition in developers.

In [Smith and Williams 2002], [Smith and Williams
2001], and [Smith and Williams 2000] we introduced
five software performance antipatterns. Then, in [Smith
and Williams 2002b], we documented four more. This
paper is the next in the series. It describes three new
software performance antipatterns that were proposed
by CMG attendees and participants in SPE seminars.
Each of the antipatterns is described in the following
sections using this standard template:
* Name: the section title
* Problem: What is the recurrent situation that
causes negative consequences?
* Solution: How do we avoid, minimize or refactor
the antipattern?

This paper also includes a summary of currently known
performance antipatterns as a reference.

2.0 FALLING DOMINOES

Remember the children’s game where you line up a set
of dominoes with just the right spacing then tip over the
first domino and watch the rest fall, one after another?
This antipattern is named after the children’s game. It's
fun as a game but, when it happens to your software, it
can be disastrous.

2.1 Problem

Remember the AT&T telephone outage of January
19907 The problem occurred when a 4ESS switch in
New York had a problem and initiated a recovery pro-
cedure [Neumann 1990]. During the recovery (a 4 to 6
second process), the switch could not accept calls, so
it sent a “congestion” signal to all of the 4ESS switches
to which it was linked indicating that it was not accept-
ing new calls. That’s when the problem began.

When the New York switch was ready to again accept
new calls, it sent a call attempt message to another
switch. That message caused the second switch, we’ll
call it B, to reset its internal logic to show that the New
York switch was back in service. While switch B was
resetting its logic, a second call attempt from the New
York switch came in. The second message confused
switch B’s software causing it to initiate its own recov-
ery procedure. Switch B then sent messages to its con-
nected switches indicating that it wasn’t accepting
additional calls. Once switch B had reset, it send out
new call requests and the problem repeated causing a
chain reaction of switch failures.

If the switches hadn’t received a second call attempt
message while resetting (i.e., the messages had

occurred farther apart), the problem would not have
occurred. The problem was solved by reducing the
message load on the network, allowing the switches to
reset themselves. The source of the problem was ulti-
mately traced to a misplaced “break” statement in the C
code.

This is an example of the Falling Dominoes software
performance antipattern. Falling Dominoes occurs
when one failure causes performance failures in other
components.

Bob Gallo reported an example of this antipattern in a
broadcast component that received input then broad-
cast it to many other components. When a communica-
tion channel failure caused one of the receiving
components to repeatedly request re-transmission, it
slowed down the entire system. Another instance of the
antipattern occurred when one receiver failed, and it
caused a feeder process to quit sending to all receiv-
ers.

Ralph Gifford reported an instance of this antipattern in
an application that created 5 connections per user
through DB2 Connect. One problem caused all to fail.

These are not only performance problems, they are
also reliability and fault tolerance problems.

2.2 Solution
The solution is to make sure that broken pieces are iso-

lated until they are repaired. The broadcast component
could monitor re-transmission requests and when a
threshold is reached, stop sending to a receiver until it
is repaired.

Feeder processes should not stop when one receiver
fails. The failed process should be isolated until it is
repaired.

For the DB2 connections, an alternative that shares
connections should be sought first. Again, failures
should be isolated.

In the AT&T example, since failure of one node causes
failure of others, the rate at which nodes fail is depen-
dent on the number of nodes that have failed as well as
the number that are active (i.e., available to fail). If the
rate of failure is first-order (linear) in both active and
failed nodes, we can write

Re = kAF

where:
RE = the rate at which nodes fail
k = rate constant
A = number of active nodes
F = number of failed nodes



The rate constant, k, is an indicator of how rapidly fail-
ures propagate.

If x is the number of failed nodes at time t, A = Ay — x
and F = Fy + x. Then:
d

T Kk(Ap—X)(Fp+Xx)

Integrating this gives the following formula for the num-
ber of nodes that have failed as a function of time:

where:
a=(Ap+* Fo)k
b= FyAp

Figure 1 graphs the number of nodes that have failed
versus at for various relative values of k.

Number Failed

Figure 1: Percent of Nodes Failed

Initially, there are no failures. But, if a failure occurs for
some external reason, the rate of failures is initially
slow, then rapid as more and more failed nodes cause
additional failures, then slow again as the number of
active nodes becomes smaller and smaller.

The above analysis addresses the number of failures in
cases such as the AT&T example. Figure 2 shows how
the amount of useful work performed by the system is
affected by the Falling Dominoes in the general case.
In region 1, the system begins with normal processing
(no failures), all of the processing is useful work. As
failures occur, the system begins executing extra pro-
cessing for errors (such as retransmitting messages).
Because the system is less than 100% busy, it is possi-
ble to do error processing in addition to the useful work,
so the total processing increases.

In region 2, error processing executes at the expense
of useful work. Eventually the system reaches a state
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Figure 2: Effect of Error Processing on Useful Work

where error processing consumes the available
resources and there is no useful work performed at all.

Thus, another solution to Falling Dominoes is to moni-
tor the ratio of error processing to useful work, and,
when an appropriate threshold has been reached, shut
down failed components rather than continue to exe-
cute error processing.

3.0 EMPTY SEMI TRUCKS

Imagine putting one bag of potato chips on a semi
truck, sending it across the country to deliver the chips
and back, then putting another bag of potato chips on it
and repeating the process. Obviously this is an ineffi-
cient way of transporting goods.

3.1 Problem

This problem occurs in software systems where an
excessive number of requests is required to perform a
task, such as retrieval of information from a database.
The problem may be due to inefficient use of available
bandwidth, an inefficient interface, or both.

3.1.1 Inefficient Use of Bandwidth

This manifestation of the Empty Semi Trucks antipat-
tern occurs in message-based systems when a very
small amount of information is sent in each message.
The amount of processing overhead is the same
regardless of the size of the message. With smaller
messages, this processing is required many more
times than necessary.

Todd Merrill reported one example of sending a large
spreadsheet of data with one cell in each packet. In
another example offerred by Bart Domzy, the colors for
a web page were defined in such a way that each one
resulted in a separate download. To make matters
worse, it was a web page with static content—the defi-
nitions were for future flexibility, but caused a very high
performance penalty.
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Figure 3: Tate’s Example of Round-Tripping [Tate 2002]

Another example that we have seen and heard often
involves MQ Series passing very small (e.g., 10 byte)
messages, even though MQ had been set up with large
containers (e.g., 400 bytes).

3.1.2 Inefficient Interface

The effect of an inefficient interface is illustrated by the
Round-Tripping antipattern [Tate 2002], a special case
of the Empty Semi Trucks performance antipattern.
Tate introduces the problem using an anecdote about
his two year old daughter who picks up her toys one at
a time and walks them to the toy box versus his five
year old daughter who picks everything up and then
makes one trip to the toy box. (He doesn’t mention how
he gets the children to pick up their toys—an interest-
ing problem in its own right.)

Tate uses a J2EE implementation of a distributed appli-
cation to illustrate how the problem appears in soft-
ware. The application displays invoices using a Web
interface. The problem is illustrated in Figure 3.

3.2 Solution
The solution to the Empty Semi Trucks Antipattern
depends on its cause.

If the problem is inefficient use of bandwidth, applica-
tion of the Batching performance pattern [Smith and

Williams 2002] will help by combining items in a mes-
sage, amortizing the overhead of initialization, trans-
mission, and termination processing over several items
instead of just one. For example, spreadsheet cells
could be combined into one packet, perhaps by rows or
columns depending on the size. Static Web pages can
define colors within the page’s HTML. MQ messages to
the same process can be combined into a single mes-
sage.

Figure 4 illustrates the benefit of combining information
to form one larger message rather than sending indi-
vidual messages.

|| Receipt |,

00 Receer | ..

Figure 4: Effect of Batching
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‘ Preparation H H H H H H Receipt ‘ ‘ Preparation

In this case, ten items can be sent in less time than
three items without Batching. The optimum batch size
can be determined using SPE models [Smith and Will-
iams 2002].

If the problem is an inefficient interface, the Coupling
performance pattern [Smith and Williams 2002] should
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Figure 5: Tate’s Solution to Round-Tripping [Tate 2002]

be used to provide a more efficient one. For the invoice
application, use of the Session Facade design pattern
[Sun 2001] would reduce the number of distributed
requests required to display an invoice.

Figure 5 shows Tate’s application of the Session
Facade pattern to the invoice application with 20 items.
Here, the 150 remote requests (10 for the invoice info
plus 7 requests for each of the 20 items) have been
reduced to one, and the time for the communication is
reduced from 4.5 seconds to 30 ms.!

In general, the time savings, T, is:
T=(t,+t)xM
where:

— 1, is the time for preparation (processing time
e.g., for acquiring message buffers as well as
transmission overhead e.g., sending message
headers),

— t, is the time for the receipt (similar processing
time and transmission overhead for acknowl-
edgements, etc.),

— M is the number of messages eliminated.

The performance of this solution could be further
improved by using the Aggregate Entity pattern [Lar-

man 2000] to replace the EJBs that access the data-
base with ordinary Java objects. This would reduce the
overhead due to EJB-to-EJB communication.

4.0 TOWER OF BABEL

The Tower of Babel failed because the builders did not
understand one another’s languages and thus were
unable to communicate. The analogy we address here
is a system of concurrent processes that must
exchange information with one another, but internally
use different formats to represent the information.

4.1 Problem

We see this problem most often when information is
translated into an exchange format, such as XML, by
the sending process then parsed and translated into an
internal format by the receiving process. While this can
be a good way to solve the problem, when the transla-
tion and parsing is excessive, the system spends most
of its time doing this and relatively little doing real work.

One GIS (geographical information system) application
experienced serious performance problems. Develop-
ers suspected that the problem was in the complex
algorithms for accessing and rendering large, detailed
maps. Upon analysis, however, the problem was actu-
ally found to be a Tower of Babel in which the request
for the GIS data was translated into XML, it was then



parsed into an internal format for preprocessing, then
the modified request was again translated into XML
and passed downstream, and so on. After the data was
retrieved, the larger amount of data was also repeat-
edly translated then parsed by multiple processes.

This antipattern often occurs when someone decides to
adopt a new standard (such as XML) regardless of
whether it is an appropriate solution. It also occurs
when developers are overly cautious. For example, the
https secure protocol is good for improving the integrity
of interactions between a secure facility and an exter-
nal user. Within the secure facility, however, it is usually
not necessary to use the https protocol to pass infor-
mation from one secure processor to another. It results
in unnecessary translation and parsing, and may be a
problem if it occurs frequently in a high-volume envi-
ronment.

4.2 Solution

The Tower of Babel is often a problem on frequently
used paths. Its solution uses the Fast Path perfor-
mance pattern [Smith and Williams 2002] to determine
which paths should be streamlined then minimizes the
processing due to unnecessary translation and parsing
on those paths. For those cases, select an internal data
representation that is optimized for the patterns of use.
When data arrives at the system boundary and/or is
sent to another system, then parsing and translation is
appropriate. The Coupling performance pattern may be
useful for matching the data format to the usage pat-
terns.

For the GIS application, eliminating unnecessary XML
translation and parsing resulted in a ten-fold reduction
in processing time!

In general, the time savings, T, is:

T =(s;+s,+s)x2N

P
where:

— S; is the service time to convert the internal for-
mat to the intermediate format (such as XML) to
send the request or response,

— Sp is the service time to parse the intermediate
format,

— S;is the service time to translate the intermedi-

ate format into the internal format

— N is the number of processes in the end-to-end
scenario that require the translation to/from the
intermediate format.

The multiplier of 2N in the formula is because the entire
process—convert, parse and translate—executes for
both the input message and the reply.

Figure 6 shows the overhead for some typical values of
Se: Sps and s; with N ranging from 1 to 10.
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Figure 6: Overhead for Excessive Translation

5.0 USE OF PERFORMANCE ANTIPATTERNS

These software performance antipatterns have four pri-
mary uses:

 identifying potential problems in software archi-
tectures and designs

« focusing on the right level of abstraction by
identifying the fundamental problem and its
solution rather than a specific “fix” that might be
outdated over time.

» effectively communicating what the problem is
and why it is a problem, and building perfor-
mance intuition

» prescribing solutions that embody sound, well-
accepted performance principles [Smith and
Williams 2002].

Because these performance antipatterns occur fre-
quently, it is easy to find examples. When you do find
them, it is still important to quantify execution charac-
teristics, such as the arrival rate of requests or process-
ing time requirements, to determine whether the
presence of a performance antipattern limits scalability
or if you are within scalability targets. For example, you
may find Empty Semi Trucks in your application. But, if
it only executes twice a day it won't pose the same
problem that it will if it executes on the Fast Path mil-
lions of times a day.

6.0 SUMMARY AND CONCLUSIONS

Performance antipatterns document common perfor-
mance mistakes made in software architectures or
designs. The use of software performance antipatterns
has proven to be valuable in detecting and correcting
performance problems as well as building performance
intuition in developers.



This paper has presented three additional performance
antipatterns. The table below summarizes all the cur-

ence.

rently documented performance antipatterns for refer-

Antipattern

Problem

Solution

Falling Dominoes

Occurs when one failure causes perfor-
mance failures in other components.

Make sure that broken pieces are iso-
lated until they are repaired.

Empty Semi Trucks

Occurs when an excessive number of
requests is required to perform a task.
It may be due to inefficient use of avail-
able bandwidth, an inefficient interface,
or both.

The Batching performance pattern
combines items into messages to
make better use of available band-
width. The Coupling performance pat-
tern, Session Facade design pattern,
and Aggregate Entity design pattern
provide more efficient interfaces.

Roundtripping [Tate 2002]

Special case of Empty Semi Trucks.
Occurs when many fields in a user
interface must be retrieved from a
remote system.

Buffer all the calls together and make
them in one trip. The Facade design

pattern and the distributed command
bean accomplish this buffering.

Tower of Babel

Occurs when processes excessively

convert, parse, and translate internal

data into a common exchange format
such as XML.

The Fast Path performance pattern
identifies paths that should be stream-
lined. Minimize the conversion, pars-
ing, and translation on those paths by
using the Coupling performance pat-
tern to match the data format to the
usage patterns.

Unbalanced Processing [Smith and
Williams 2002]

Occurs when processing cannot make
use of available processors, the slow-
est filter in a “pipe and filter” architec-
ture causes the system to have
unacceptable throughput, or when
extensive processing in general
impedes overall response time.

1) Restructure software or change
scheduling algorithms to enable con-
current execution. 2) Break large filters
into more stages and combine very
small ones to reduce overhead. 3)
Move extensive processing so that it
doesn’t impede high traffic or more
important work.

Unnecessary Processing [Smith and
Williams 2002b]

Occurs when processing is not needed
or not needed at that time.

Delete the extra processing steps, re-
order steps to detect unnecessary
steps earlier, or restructure to delegate
those steps to a background task.

The Ramp [Smith and Williams 2002b]

Occurs when processing time
increases as the system is used.

Select algorithms or data structures
based on maximum size or use algo-
rithms that adapt to the size.

Sisyphus Database Retrieval Perfor-
mance Antipattern [Dugan, et al. 2002]

Special case of The Ramp. Occurs
when performing repeated queries that
need only a subset of the results.

Use advanced search techniques that
only return the needed subset.

More is Less [Rogers and Boyer]

Occurs when a system spends more
time “thrashing” than accomplishing
real work because there are too many
processes relative to available
resources.

Quantify the thresholds where thrash-
ing occurs (using models or measure-
ments) and determine if the
architecture can meet its performance
goals while staying below the thresh-
holds.

“god” Class [Smith and Williams 2002]

Occurs when a single class either 1)
performs all of the work of an applica-
tion or 2) holds all of the application’s
data. Either manifestation results in
excessive message traffic that can
degrade performance.

Refactor the design to distribute intelli-
gence uniformly over the application’s
top-level classes, and to keep related
data and behavior together.




Antipattern

Problem

Solution

Excessive Dynamic
Allocation [Smith and Williams 2002]

Occurs when an application unneces-
sarily creates and destroys large num-
bers of objects during its execution.
The overhead required to create and
destroy these objects has a negative
impact on performance.

1) “Recycle” objects (via an object
“pool”) rather than creating new ones
each time they are needed. 2) Use the
Flyweight pattern to eliminate the need
to create new objects.

Circuitous Treasure Hunt [Smith and
Williams 2002]

Occurs when an object must look in
several places to find the information
that it needs. If a large amount of pro-
cessing is required for each “look,” per-
formance will suffer.

Refactor the design to provide alterna-
tive access paths that do not require a
Circuitous Treasure Hunt (or to reduce
the cost of each “look”).

One-Lane Bridge [Smith and Williams
2002]

Occurs at a point in execution where
only one, or a few, processes may con-
tinue to execute concurrently (e.g.,
when accessing a database). Other
processes are delayed while they wait
for their turn.

To alleviate the congestion, use the
Shared Resources Principle to mini-
mize conflicts.

Traffic Jam [Smith and Williams 2002]

Occurs when one problem causes a
backlog of jobs that produces wide
variability in response time which per-
sists long after the problem has disap-

Begin by eliminating the original cause
of the backlog. If this is not

possible, provide sufficient processing
power to handle the worst-case load.

peared.
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