
Chapter 2 

SPE Quick View

The aim of science is not to open the door to infinite wisdom, but to 
set a limit to infinite error.

—Bertolt Brecht
 In This Chapter:

n The SPE process
n Example illustrating the process
n SPE in the Unified Software Process
n Creating software with good performance characteristics
 2.1 SPE Process for Object-Oriented Systems
For object-oriented systems, we adapt the general SPE techniques to the 
process typically followed for object-oriented development, and to the 
artifacts that it produces.

The SPE process focuses on the system’s use cases and the scenarios that 
describe them. In a use-case-driven process such as the Unified Process 
([Kruchten 1999], [Jacobson et al. 1999]), use cases are defined as part 
of requirements definition (or earlier) and are refined throughout the 
design process. From a development perspective, use cases and their sce-
narios provide a means of understanding and documenting the system’s 
requirements, architecture, and design. From a performance perspective, 
use cases allow you to identify the workloads that are significant from a 
performance point of view, that is, the collections of requests made by 
27



28 Part I Introduction and Overview
the users of the system. The scenarios allow you to derive the processing 
steps involved in each workload.

Chapter 15 
describes 
these steps 
in more 
detail.

The SPE process includes the following steps. The activity diagram in 
Figure 2-1 captures the overall process.

Figure 2-1: The SPE Process for Object-Oriented Systems

identify
critical

use cases

select key
performance

scenarios

establish
performance

objectives

assess
performance

risk

construct
performance

model(s)

add software
resource

requirements

add computer
resource

requirements

evaluate
performance

model(s)
modify
product
concept

revise
performance

objectives

verify and
validate
models

[performance
acceptable]

[feasible]

[infeasible]

modify/
create

scenarios



Chapter 2 SPE Quick View 29
1. Assess performance risk: Assessing the performance risk at the outset 
of the project tells you how much effort to put into SPE activities. If 
the project is similar to others that you have built before, is not crit-
ical to your mission or economic survival, and has minimal com-
puter and network usage, then the SPE effort can be minimal. If 
not, then a more significant SPE effort is needed.

Use cases 
are 
discussed in 
Chapter 3.

2. Identify critical use cases: The critical use cases are those that are 
important to the operation of the system, or that are important to 
responsiveness as seen by the user. The selection of critical use cases 
is also risk driven. You look for use cases where there is a risk that, if 
performance goals are not met, the system will fail or be less than 
successful.  
 

Typically, the critical use cases are only a subset of the use cases that 
are identified during object-oriented analysis. In the UML, use cases 
are represented by use case diagrams.

Sequence 
diagrams 
and their 
extensions 
are 
discussed in 
Chapter 3.

3. Select key performance scenarios: It is unlikely that all of the scenarios 
for each critical use case will be important from a performance per-
spective. For each critical use case, the key performance scenarios are 
those that are executed frequently, or those that are critical to the 
perceived performance of the system. Each performance scenario 
corresponds to a workload. We represent scenarios by using 
sequence diagrams augmented with some useful extensions.

Performance 
objectives 
are 
discussed in 
Chapter 7.

4. Establish performance objectives: You should identify and define per-
formance objectives and workload intensities for each scenario selected 
in step 2. Performance objectives specify the quantitative criteria for 
evaluating the performance characteristics of the system under 
development. These objectives may be expressed in three primary 
ways by response time, throughput, or constraints on resource usage. 
For information systems, response time is typically described from a 
user perspective, that is, the number of seconds required to respond 
to a user request. For real-time systems, response time is the amount 
of time required to respond to a given external event. Throughput 
requirements are specified as the number of transactions or events to 
be processed per unit of time. 
 

Workload intensities specify the level of usage for the scenario. They 
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are specified as an arrival rate (e.g., number of Web site hits per 
hour) or number of concurrent users.

Repeat steps 5 through 8 until there are no outstanding performance 
problems.

Chapter 4 
discusses 
execution 
graphs.

5. Construct performance models: We use execution graphs to represent 
software processing steps in the performance model. The sequence-
diagram representations of the key performance scenarios are trans-
lated to execution graphs. 

Gathering 
data on 
software and 
computer 
resource 
requirements 
is discussed 
in Chapter 7 
and Part III.

6. Determine software resource requirements: The processing steps in an 
execution graph are typically described in terms of the software 
resources that they use. Software resource requirements capture 
computational needs that are meaningful from a software perspec-
tive. For example, we might specify the number of messages sent or 
the number of database accesses required in a processing step.  
 

You base estimates of the amount of processing required for each 
step in the execution graph on the operation specifications for each 
object involved. This information is part of the class definition in 
the class diagram. As described in Chapter 4, when done early in the 
development process, these may be simple best- and worst-case esti-
mates. Later, as each class is elaborated, the estimates become more 
precise.

Resource 
requirements 
are 
discussed in 
Chapter 7.

7. Add computer resource requirements: Computer resource require-
ments map the software resource requirements from step 6 onto the 
amount of service they require from key devices in the execution 
environment. Computer resource requirements depend on the envi-
ronment in which the software executes. Information about the 
environment is obtained from the UML deployment diagram and 
other documentation. An example of a computer resource require-
ment would be the number of CPU instructions and disk I/Os 
required for a database access.

Note: Steps 6 and 7 could be combined, and the amount of service 
required from key devices estimated directly from the operation specifica-
tions for the steps in the scenario. However, this is more difficult than esti-
mating software resources in software-oriented terms and then mapping 
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them onto the execution environment. In addition, this separation makes it 
easier to explore different execution environments in “what if” studies.

Performance 
models and 
their 
solutions are 
discussed in 
Chapters 4, 5 
and 6.

8. Evaluate the models: Solving the execution graph characterizes the 
resource requirements of the proposed software alone. If this solu-
tion indicates that there are no problems, you can proceed to solve 
the system execution model. This characterizes the software’s perfor-
mance in the presence of factors that could cause contention for 
resources, such as other workloads or multiple users. 
 

If the model solution indicates that there are problems, there are two 
alternatives:
• Modify the product concept: Modifying the product concept 

involves looking for feasible, cost-effective alternatives for satis-
fying this use case instance. If one is found, we modify the sce-
nario(s) or create new ones and solve the model again to evaluate 
the effect of the changes on performance.

• Revise performance objectives: If no feasible, cost-effective alterna-
tive exists, then we modify the performance goals to reflect this 
new reality. 
 

It may seem unfair to revise the performance objectives if you 
can’t meet them (if you can’t hit the target, redefine the target). It 
is not wrong if you do it at the outset of the project. Then all of 
the stakeholders in the system can decide if the new goals are 
acceptable. On the other hand, if you get to the end of the 
project, find that you didn’t meet your goals, and then revise the 
objectives—that’s wrong.

Model 
verification 
and 
validation is 
discussed in 
Chapter 15.

9. Verify and validate the models: Model verification and validation are 
ongoing activities that proceed in parallel with the construction and 
evaluation of the models. Model verification is aimed at determining 
whether the model predictions are an accurate reflection of the soft-
ware’s performance. It answers the question, “Are we building the 
model right?” For example, are the resource requirements that we 
have estimated reasonable? 
 

Model validation is concerned with determining whether the model 
accurately reflects the execution characteristics of the software. It 
answers the question [Boehm 1984], “Are we building the right 
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model?” We want to ensure that the model faithfully represents the 
evolving system. Any model will only contain what we think to 
include. Therefore, it is particularly important to detect any model 
omissions as soon as possible. 
 

Both verification and validation require measurement. In cases 
where performance is critical, it may be necessary to identify critical 
components, implement or prototype them early in the develop-
ment process, and measure their performance characteristics. The 
model solutions help identify which components are critical.

Late life cycle 
and post 
deployment 
SPE 
activities are 
discussed in 
Chapter 15.

These steps describe the SPE process for one phase of the development 
cycle, and the steps repeat throughout the development process. At each 
phase, you refine the performance models based on your increased 
knowledge of details in the design. You may also revise analysis objec-
tives to reflect the concerns that exist for that phase.

 2.2 Case Study

To illustrate the process of modeling and evaluating the performance of 
an object-oriented design, we will use an example based on an auto-
mated teller machine (ATM). This example is based on a real-world 
development project in which one of the authors participated. It has 
been simplified for this presentation, and some details have been 
changed to preserve anonymity.

The ATM accepts a bank card and requests a personal identification number 
(PIN) for user authentication. Customers can perform any of three transac-
tions at the ATM: deposit cash to an account, withdraw cash from an 
account, or request the available balance in an account. A customer may per-
form several transactions during a single ATM session. The ATM communi-
cates with a computer at the host bank, which verifies the customer-account 
combination and processes the transaction. When the customer is finished 
using the ATM, a receipt is printed for all transactions, and the customer’s 
card is returned.

The following sections illustrate the application of the SPE process for 
object-oriented systems to the ATM.
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2.2.1 Assess Performance Risk (Step 1)
The performance risk in constructing the ATM itself is small. Only one 
customer uses the machine at a time, and the available hardware is more 
than adequate for the task. Consequently, the amount of SPE effort on 
this project will be small. However, the host software (considered later) 
must deal with a number of concurrent ATM users, and response time 
there is important, so a more substantial SPE effort is justified.

2.2.2 Identify Critical Use Cases (Step 2)
We begin with the use case diagram for the ATM shown in Figure 2-2. 
As the diagram indicates, several use cases have been identified: Opera-

tor-Transaction (e.g., reloading a currency cassette), CustomerTransaction

(e.g., a withdrawal), and CommandFunctions (e.g., to go off-line). 
Clearly, CustomerTransaction is the critical use case, the one that will 
most affect the customer’s perception of the ATM’s performance. 

Figure 2-2: ATM Use Cases
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2.2.3 Select Key Performance Scenarios (Step 3)
We therefore select the CustomerTransaction as the first performance sce-
nario to consider. This scenario represents typical, error-free customer 
transactions from the CustomerTransaction use case. Later, after we con-
firm that the architecture and design are appropriate for this scenario, 
we will consider additional scenarios. To evaluate the scenario, we need a 
specification for the workload intensity—that is, the number of Custom-

erTransactions or their arrival rate during the peak period.
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Chapter 3 
discusses 
sequence 
diagrams 
and their 
extensions.

Figure 2-3 shows a scenario for customer transactions on the ATM. The 
notation used is a UML sequence diagram augmented with some addi-
tional features. These features allow us to denote repetition and choice. 
They are indicated by the rectangular areas labeled loop and alt, respec-
tively. This scenario indicates that, after inserting a card and entering a 
PIN, a customer may repeatedly select transactions which may be depos-
its, withdrawals, or balance inquiries. The rounded rectangles indicate 
that the details of these transactions are elaborated in additional 
sequence diagrams.

Figure 2-3: Customer Transaction Scenario
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The scenario in Figure 2-3 combines the customer transactions of 
deposit, withdrawal, and balance inquiry. We combine them because we 
want to model what a customer does during an ATM session, and a cus-
tomer may request more than one transaction during a single session. 
While we don’t know exactly which transaction(s) a user will request, we 
can assign probabilities to each type of transaction based on reasonable 
guesses or actual measurements of customer activities.
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Note: We could also represent the information in Figure 2-3 using a UML 
activity diagram. However, we have found that the extended sequence 
diagram notation is more familiar to software developers, and is easier to 
translate to a software execution model.

2.2.4 Establish Performance Objectives (Step 4)
As a bank customer, what response time do you expect from an ATM? 
Historically, performance objectives have been based on “time in the 
(black) box,” that is, the time from the arrival of the (complete) request 
to the time the response leaves the host computer. That approach was 
used to separate things outside the control of the software (e.g., the time 
for the user to enter information, network congestion, and so on) from 
those that are more directly influenced by the software itself. If we take 
this approach for the ATM, a reasonable performance objective would 
be one second for the portion of the time on the host bank for each of 
the steps processDeposit, processWithdrawal, and processBalanceInquiry.

However, for SPE we prefer to expand the scope to cover the end-to-end 
time for a customer to complete a business task (e.g., an ATM session). 
Then, the results of the analysis will show opportunities to accomplish 
business tasks more quickly by reducing the number and type of interac-
tions with the system, in addition to reducing the processing “in the 
box.” A reasonable performance objective for this scenario might be 30 
seconds or less to complete the (end-to-end) ATM session.

2.2.5 Construct Performance Models (Step 5)
The models for evaluating the performance of the ATM are based on the 
key scenarios identified earlier in the process. These performance scenar-
ios represent the same processing as the sequence diagrams using execu-
tion graphs.

Chapter 4 
discusses 
translating 
scenarios to 
execution 
graphs.

Figure 2-4 shows the execution graph that corresponds to the ATM sce-
nario in Figure 2-3. The rectangles indicate processing steps; those with 
bars indicate that the processing step is expanded in a subgraph. Figure 
2-5 shows the expansion of the processTransaction step; the expansion of 
the other steps is not shown here. The circular node indicates repetition, 
while the jagged node indicates choice.
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Figure 2-4: ATM Execution 
Graph

Figure 2-5: Expansion of 
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The execution graph in Figure 2-4 expresses the same scenario as the 
sequence diagram in Figure 2-3: After inserting a card (to provide cus-
tomer information) and entering a PIN, a customer may repeatedly 
select transactions, which may be deposits, withdrawals, or balance 
inquiries. Here, the number of transactions that a customer may per-
form is indicated by the parameter n.

2.2.6 Determine Software Resource Requirements 
(Step 6)

Software 
resources 
are 
discussed in 
more detail in 
Chapters 4 
and 7.

The types of software resources will differ depending on the type of 
application and the operating environment. The types of software 
resources that are important for the ATM are: 

• Screens—the number of screens displayed to the ATM customer
• Host—the number of interactions with the host bank
• Log—the number of log entries on the ATM machine
• Delay—the relative delay in time for other ATM device process-

ing, such as the cash dispenser or receipt printer

Note: Software resource requirements are application-technology spe-
cific. Different applications will specify requirements for different types of 
resources. For example, a system with a significant database component 
might specify a software resource called “DBAccesses” and specify the 
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requirements in terms of the number of accesses. We cover the identifica-
tion of applicable software resources in Part III.

We specify requirements for each of these resources for each processing 
step in the execution graph, as well as the probability of each case alter-
native and the number of loop repetitions. Figure 2-6 shows the soft-
ware resource requirements for processWithdrawal.

Figure 2-6: Software Resource Requirements for processWithdrawal
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2.2.7 Add Computer Resource Requirements (Step 7)
We must also specify the computer resource requirements for each software 
resource request. The values specified for computer resource require-
ments connect the values for software resource requirements to device 
usage in the target environment. The computer resource requirements 



38 Part I Introduction and Overview
also specify characteristics of the operating environment, such as the 
types of processors/devices, how many of each, their speed, and so on.

Table 2-1: Example Overhead Matrix

Devices CPU Disk Display Delay Net

Quantity 1 1 1 1 1

Service Units Sec. Phys. I/O Screens Units Msgs.

Screen 0.001 1

Host 0.005 3 2

Log 0.001 1

Delay 1

Service Time 1 0.02 1 1 0.05

Table 2-1 contains the computer resource requirements for the ATM 
example. The names of the devices in the ATM unit are in the first row, 
while the second row specifies how many devices of each type are in the 
facility. The third row is a comment that describes the unit of measure 
for the values specified for the software processing steps. The next four 
rows are the names of the software resources specified for each process-
ing step, and the last row specifies the service time for the devices in the 
computer facility.

The values in the center section of the table define the connection 
between software resource requests and computer device usage. The
Display “device” represents the time to display a screen and for the 
customer to respond to the prompt. The 1 in the Display column for the 
Screen row means that each screen specified in the software model causes 
one visit to the Display delay server. We arbitrarily assume this delay to 
be one second (in the service time row). Similarly, each Host and Delay

specification in the software model results in a delay before processing 
the next step. We assume the Host delay is 3 seconds; other delays are 
specified in 1-second increments. Each Host request also sends 1 message 
via the Net and receives 1 reply message. Each message takes an average 
of 0.05 second. These values may be measured, or estimates could be 
obtained by constructing and evaluating more detailed models of the 
host processing required. 
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The 
connection 
between 
software 
resources 
and 
processing 
overhead is 
discussed in 
Chapter 4.

Thus, each value specified for a processing step in the software model 
generates a demand for service from one or more devices in a facility. 
The computer resource requirements define the devices used and the 
amount of service needed from each device. The demand is the product 
of the software model value times the value in the overhead matrix cell 
times the service time for the column.

2.2.8 Evaluate the Models (Step 8)
Details of the 
software 
execution 
model 
solution for 
the ATM are 
presented in 
Chapter 4.

We begin by solving the software model. This solution provides a “no 
contention” result. Here, we find that the total end-to-end time for the 
scenario is approximately 29 seconds, and most of that is due to the 
delays at the ATM unit for customer interactions and processing. This is 
a best-case result and, in this case, confirms that a single ATM will com-
plete in the desired time. Because it is close to exceeding the objective, 
however, we may want to examine alternatives to reduce the end-to-end 
time. We should also examine the sensitivity of the results to our esti-
mates. In addition, further studies will examine the host bank perfor-
mance when there are multiple ATMs whose transactions could produce 
contention for computer resources. This will affect the time to handle 
Host requests. 

2.2.9 Verify and Validate the Models (Step 9)
Chapter 6 
presents 
details of the 
system 
execution 
model 
solution for 
the ATM. 
 
Chapter 8 
discusses 
performance 
measure-
ment.

We need to confirm that the performance scenarios that we selected to 
model are critical to performance, and confirm the correctness of the 
workload intensity specifications, the software resource specifications, 
the computer resource specifications, and all other values that are input 
into the model. We also need to make sure that there are no large pro-
cessing requirements that are omitted from the model. To do this, we 
will conduct measurement experiments on the operating environment, 
prototypes, and analogous or legacy systems early in the modeling pro-
cess. We will measure evolving code as soon as viable. SPE suggests using 
early models to identify components critical to performance, and imple-
menting them first. Measuring them and updating the model estimates 
with measured values increases precision in key areas early.
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 2.3 SPE in the Unified Software Process
To be effective, the SPE steps described in Section 2.2 should be an inte-
gral part of the way in which you approach software development. Inte-
grating SPE into your software process avoids two problems that we 
have seen repeatedly. One is over-reliance on individuals. When you rely 
on individuals to perform certain tasks instead of making them part of 
the process, and then those individuals leave the company, their tasks are 
frequently forgotten. The other problem is that if SPE is not part of the 
process, it is easy to omit the SPE evaluations when time is tight or the 
budget is limited.

SPE 
deliverables 
are 
discussed in 
Chapter 15.

Integrating SPE into the software development process is not difficult. It 
is compatible with a wide variety of software process models, including 
the waterfall model [Royce 1970], the spiral model [Boehm 1988], and 
the Unified Process [Jacobson et al. 1999], [Kruchten 1999]. In each 
case, integrating SPE into your software process requires that you define 
the milestones and deliverables that are appropriate to your organiza-
tion, project, and the level of SPE effort required.

To illustrate the use of SPE in the software process, we will focus on the 
Unified Process. This process is iterative and incremental, and its fea-
tures are typical of the process used for many object-oriented projects.

The Unified Process is divided into four phases: inception, elaboration, 
construction, and transition. One complete pass through these four 
phases constitutes a cycle that results in a product release. A product 
evolves over time by repeating the four phases in additional cycles.

The Unified Process is risk-driven. That is, the focus of each iteration is 
identified, prioritized, and performed based on risks. Risks are anything 
that might endanger the success of the project, including the use of new 
technologies, the ability of the architecture to accommodate changes or 
evolution, market factors, schedule, and others. Because the ability to 
meet performance objectives is a potentially significant risk, the Unified 
Process suggests dealing with this and other risks early in the process, 
when the decisions that you make are the most important and the most 
difficult to change later. The approach used by the Unified Process is to 
address important risks, such as performance, in the inception and 
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elaboration phase, and to continue monitoring them during the 
construction phase. Risks are identified and managed using iterations.

Integrating SPE into the Unified Process is straightforward. When 
beginning a new project, you assess performance risk by evaluating the 
extent of use of new technology, the experience of developers, the com-
plexity of the new software and operating environment, the scalability 
requirements for anticipated volumes of usage, and other factors. When 
planning another iteration, you evaluate the results of the previous itera-
tion to determine if there is a performance risk. Feasibility models can 
quantify the achievability of performance goals. If there is a performance 
risk, you plan and execute the current iteration to reduce that risk.

Note: In cases where performance is critical and the risk is high, you 
might perform an iteration specifically to address performance concerns. 
This iteration might involve, for example, implementing or prototyping a 
critical component to provide measured values for model input, or to dem-
onstrate that the component under consideration can, indeed, be con-
structed to meet its performance objective.

In the inception and elaboration phases, your knowledge of the details 
of the system’s architecture and design are sketchy. As a result, during 
these phases, you will focus on best- and worst-case analyses using upper 
and lower bounds for the resources required in each processing step in 
the execution graph. Later, as your knowledge of the system’s details 
improves, you can elaborate the model and refine your estimates.

 2.4 Performance Solutions
Performance 
solutions are 
discussed in 
Part IV.

The quantitative techniques described in Section 2.2 form the core of 
the SPE process. SPE is more than models and measurements, however. 
Other aspects of SPE focus on creating software that has good perfor-
mance characteristics, as well as on identifying and correcting problems 
when they arise. They include

• Applying performance principles to create architectures and 
designs with the appropriate performance characteristics for 
your application

• Applying performance patterns to solve common problems
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• Identifying performance antipatterns (common performance 
problems) and refactoring them to improve performance

• Using late life cycle techniques for tough problems

An overview of each of these aspects of SPE follows.

2.4.1 Performance Principles
Performance 
Principles 
are 
presented in 
Chapter 9.

Constructing and solving performance models quantifies the perfor-
mance of your software’s architecture and design. After you have mod-
eled a number of different designs, some of which have good 
performance characteristics and some of which don’t, you will begin to 
develop a feel for what works and what doesn’t. You will avoid those 
design strategies that have repeatedly produced poor performance and, 
consciously or unconsciously, incorporate those that consistently pro-
duce good performance into your standard “bag of tricks.”

A set of general principles for creating responsive systems helps shorten 
that learning process. The performance principles help to identify 
design alternatives that are likely to meet performance objectives.

The nine performance principles presented in Chapter 9 generalize and 
abstract the knowledge that experienced performance engineers use in 
constructing software systems. They help to identify design alternatives 
that are likely to meet performance objectives. 

2.4.2 Performance Patterns
Performance 
Patterns are 
presented in 
Chapter 10.

A pattern is a common solution to a problem that occurs in many differ-
ent contexts [Gamma et al. 1995]. It provides a general solution that 
may be specialized for a given context. Performance patterns describe 
best practices for producing responsive, scalable software. Each perfor-
mance pattern is a realization of one or more of the performance princi-
ples. Chapter 10 presents seven performance patterns. These are new 
patterns that specifically address performance and scalability.

2.4.3 Performance Antipatterns
Performance 
Antipatterns 
are 
presented in 
Chapter 11.

Antipatterns are conceptually similar to patterns in that they document 
recurring solutions to common design problems [Brown et al. 1998]. 
They are known as antipatterns because their use (or misuse) produces 
negative consequences. Antipatterns document common mistakes made 
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during software development. They also document solutions, or refac-
torings, for these mistakes. Thus, antipatterns tell you what to avoid and 
how to fix problems when you find them.

Performance antipatterns document recurring performance problems 
and their solutions. They complement the performance patterns by doc-
umenting what not to do and how to fix a problem when you find one. 
This approach is particularly useful for performance because good per-
formance is the absence of problems. By illustrating performance prob-
lems and their causes, performance antipatterns help build performance 
intuition.

2.4.4 Implementation Solutions
Implementa-
tion solutions 
are 
presented in 
Chapter 12.

If you have a poor architecture or design, it is unlikely that any amount 
of clever coding will enable you to achieve your performance objectives. 
This does not mean that later life cycle activities can be ignored, how-
ever. In fact, it is necessary to manage performance throughout the soft-
ware development process to ensure that you will meet your objectives.

In an ideal world, once you have constructed and solved the SPE models 
to verify that your proposed architecture and design will meet your per-
formance objectives, most of your work would be done. Your primary 
focus during the later phases of development would be to monitor the 
evolving software to confirm that the performance is as predicted, or to 
detect and correct any deviations that arise. For many systems, this may 
be all that is needed.

The real world is sometimes not so cooperative, however, so it is often 
necessary to carefully manage performance throughout the software 
development cycle. For example, some systems have a high risk of per-
formance failure, or have other constraints (e.g., regulatory constraints 
for safety-critical systems) that require closer monitoring throughout 
implementation, along with careful attention to detailed design and 
coding activities.

You may find yourself with a system that has already been implemented 
and has performance problems. In this case, it is too late to apply the 
SPE techniques covered in other chapters from scratch. Instead, you 
must start with what you have and try to make it work.
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Our 
systematic 
approach to 
tuning is 
presented in 
Chapter 12.

A systematic strategy for tuning poorly performing software that is based 
on quantitative data helps you to focus on the areas with the highest 
payoff, rather than expending effort on improvements that have a negli-
gible overall effect.

Once you have identified the causes of the problems, you can correct 
them by applying the performance principles, using one of the perfor-
mance patterns. Alternatively, if you have identified a performance anti-
pattern, you can apply one of its refactorings. Chapter 12 discusses 
specific solutions for many common problems, as well as solutions 
specifically adapted for object-oriented software and the C++ and Java 
languages.

 2.5 Summary
The SPE process focuses on the system’s use cases and the scenarios that 
describe them. This focus allows you to identify the workloads that are 
most significant to the software’s performance, and to focus your efforts 
where they will do the most good.

SPE begins early in the software development process to model the per-
formance of the proposed architecture and high-level design. The mod-
els help to identify potential performance problems when they can be 
fixed quickly and economically.

Performance modeling begins with the software model. You identify the 
use cases that are critical from a performance perspective, select the key 
scenarios for these use cases, and establish performance objectives for 
each scenario. To construct the software model, you translate the 
sequence diagram representing a key scenario to an execution graph. 
This establishes the processing flow for the model. Then, you add soft-
ware and computer resource requirements and solve the model.

If the software model solution indicates that there are no performance 
problems, you can proceed to construct and solve the system model to 
see if adding the effects of contention reveals any problems. If the soft-
ware model indicates that there are problems, you should deal with these 
before going any further. If there are feasible, cost-effective alternatives, 
you can model these to see if they meet the performance goals. If there 
are no feasible, cost-effective alternatives, you will need to modify your 
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performance objectives, or perhaps reconsider the viability of the 
project.

To be effective, the SPE steps described in this chapter should be an 
integral part of the way in which you approach software development. 
SPE can easily be incorporated into your software process by defining 
the milestones and deliverables that are appropriate to your organiza-
tion, the project, and the level of SPE effort required. This chapter pre-
sented an overview of how SPE can be integrated into the Unified 
Software Process.

The quantitative techniques described in Section 2.2 form the core of 
the SPE process. SPE is more than models and measurements, however. 
Other aspects of SPE focus on creating software that has good perfor-
mance characteristics, as well as on identifying and correcting problems 
when they arise. They include

• Applying performance principles to create architectures and 
designs with the appropriate performance characteristics for 
your application

• Applying performance patterns to solve common problems
• Identifying performance antipatterns (common performance 

problems) and refactoring them to improve performance
• Using late life cycle techniques to ensure that the implementation 

meets performance objectives

By applying these techniques, you will be able to cost-effectively build 
performance into your software and avoid the kinds of performance fail-
ures described in Chapter 1.
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