
Chapter 2

SPE Quick View

The aim of science is not to open the door to infinite wisdom, but to
set a limit to infinite error.

—Bertolt Brecht
 In This Chapter:

n The SPE process
n Example illustrating the process
n SPE in the Unified Software Process
n Creating software with good performance characteristics
 2.1 SPE Process for Object-Oriented Systems
For object-oriented systems, we adapt the general SPE techniques to the
process typically followed for object-oriented development, and to the
artifacts that it produces.

The SPE process focuses on the system’s use cases and the scenarios that
describe them. In a use-case-driven process such as the Unified Process
([Kruchten 1999], [Jacobson et al. 1999]), use cases are defined as part
of requirements definition (or earlier) and are refined throughout the
design process. From a development perspective, use cases and their sce-
narios provide a means of understanding and documenting the system’s
requirements, architecture, and design. From a performance perspective,
use cases allow you to identify the workloads that are significant from a
performance point of view, that is, the collections of requests made by
27

28 Part I Introduction and Overview
the users of the system. The scenarios allow you to derive the processing
steps involved in each workload.

Chapter 15
describes
these steps
in more
detail.

The SPE process includes the following steps. The activity diagram in
Figure 2-1 captures the overall process.

Figure 2-1: The SPE Process for Object-Oriented Systems

identify
critical

use cases

select key
performance

scenarios

establish
performance

objectives

assess
performance

risk

construct
performance

model(s)

add software
resource

requirements

add computer
resource

requirements

evaluate
performance

model(s)
modify
product
concept

revise
performance

objectives

verify and
validate
models

[performance
acceptable]

[feasible]

[infeasible]

modify/
create

scenarios

Chapter 2 SPE Quick View 29
1. Assess performance risk: Assessing the performance risk at the outset
of the project tells you how much effort to put into SPE activities. If
the project is similar to others that you have built before, is not crit-
ical to your mission or economic survival, and has minimal com-
puter and network usage, then the SPE effort can be minimal. If
not, then a more significant SPE effort is needed.

Use cases
are
discussed in
Chapter 3.

2. Identify critical use cases: The critical use cases are those that are
important to the operation of the system, or that are important to
responsiveness as seen by the user. The selection of critical use cases
is also risk driven. You look for use cases where there is a risk that, if
performance goals are not met, the system will fail or be less than
successful.

Typically, the critical use cases are only a subset of the use cases that
are identified during object-oriented analysis. In the UML, use cases
are represented by use case diagrams.

Sequence
diagrams
and their
extensions
are
discussed in
Chapter 3.

3. Select key performance scenarios: It is unlikely that all of the scenarios
for each critical use case will be important from a performance per-
spective. For each critical use case, the key performance scenarios are
those that are executed frequently, or those that are critical to the
perceived performance of the system. Each performance scenario
corresponds to a workload. We represent scenarios by using
sequence diagrams augmented with some useful extensions.

Performance
objectives
are
discussed in
Chapter 7.

4. Establish performance objectives: You should identify and define per-
formance objectives and workload intensities for each scenario selected
in step 2. Performance objectives specify the quantitative criteria for
evaluating the performance characteristics of the system under
development. These objectives may be expressed in three primary
ways by response time, throughput, or constraints on resource usage.
For information systems, response time is typically described from a
user perspective, that is, the number of seconds required to respond
to a user request. For real-time systems, response time is the amount
of time required to respond to a given external event. Throughput
requirements are specified as the number of transactions or events to
be processed per unit of time.

Workload intensities specify the level of usage for the scenario. They

30 Part I Introduction and Overview
are specified as an arrival rate (e.g., number of Web site hits per
hour) or number of concurrent users.

Repeat steps 5 through 8 until there are no outstanding performance
problems.

Chapter 4
discusses
execution
graphs.

5. Construct performance models: We use execution graphs to represent
software processing steps in the performance model. The sequence-
diagram representations of the key performance scenarios are trans-
lated to execution graphs.

Gathering
data on
software and
computer
resource
requirements
is discussed
in Chapter 7
and Part III.

6. Determine software resource requirements: The processing steps in an
execution graph are typically described in terms of the software
resources that they use. Software resource requirements capture
computational needs that are meaningful from a software perspec-
tive. For example, we might specify the number of messages sent or
the number of database accesses required in a processing step.

You base estimates of the amount of processing required for each
step in the execution graph on the operation specifications for each
object involved. This information is part of the class definition in
the class diagram. As described in Chapter 4, when done early in the
development process, these may be simple best- and worst-case esti-
mates. Later, as each class is elaborated, the estimates become more
precise.

Resource
requirements
are
discussed in
Chapter 7.

7. Add computer resource requirements: Computer resource require-
ments map the software resource requirements from step 6 onto the
amount of service they require from key devices in the execution
environment. Computer resource requirements depend on the envi-
ronment in which the software executes. Information about the
environment is obtained from the UML deployment diagram and
other documentation. An example of a computer resource require-
ment would be the number of CPU instructions and disk I/Os
required for a database access.

Note: Steps 6 and 7 could be combined, and the amount of service
required from key devices estimated directly from the operation specifica-
tions for the steps in the scenario. However, this is more difficult than esti-
mating software resources in software-oriented terms and then mapping

Chapter 2 SPE Quick View 31
them onto the execution environment. In addition, this separation makes it
easier to explore different execution environments in “what if” studies.

Performance
models and
their
solutions are
discussed in
Chapters 4, 5
and 6.

8. Evaluate the models: Solving the execution graph characterizes the
resource requirements of the proposed software alone. If this solu-
tion indicates that there are no problems, you can proceed to solve
the system execution model. This characterizes the software’s perfor-
mance in the presence of factors that could cause contention for
resources, such as other workloads or multiple users.

If the model solution indicates that there are problems, there are two
alternatives:
• Modify the product concept: Modifying the product concept

involves looking for feasible, cost-effective alternatives for satis-
fying this use case instance. If one is found, we modify the sce-
nario(s) or create new ones and solve the model again to evaluate
the effect of the changes on performance.

• Revise performance objectives: If no feasible, cost-effective alterna-
tive exists, then we modify the performance goals to reflect this
new reality.

It may seem unfair to revise the performance objectives if you
can’t meet them (if you can’t hit the target, redefine the target). It
is not wrong if you do it at the outset of the project. Then all of
the stakeholders in the system can decide if the new goals are
acceptable. On the other hand, if you get to the end of the
project, find that you didn’t meet your goals, and then revise the
objectives—that’s wrong.

Model
verification
and
validation is
discussed in
Chapter 15.

9. Verify and validate the models: Model verification and validation are
ongoing activities that proceed in parallel with the construction and
evaluation of the models. Model verification is aimed at determining
whether the model predictions are an accurate reflection of the soft-
ware’s performance. It answers the question, “Are we building the
model right?” For example, are the resource requirements that we
have estimated reasonable?

Model validation is concerned with determining whether the model
accurately reflects the execution characteristics of the software. It
answers the question [Boehm 1984], “Are we building the right

32 Part I Introduction and Overview
model?” We want to ensure that the model faithfully represents the
evolving system. Any model will only contain what we think to
include. Therefore, it is particularly important to detect any model
omissions as soon as possible.

Both verification and validation require measurement. In cases
where performance is critical, it may be necessary to identify critical
components, implement or prototype them early in the develop-
ment process, and measure their performance characteristics. The
model solutions help identify which components are critical.

Late life cycle
and post
deployment
SPE
activities are
discussed in
Chapter 15.

These steps describe the SPE process for one phase of the development
cycle, and the steps repeat throughout the development process. At each
phase, you refine the performance models based on your increased
knowledge of details in the design. You may also revise analysis objec-
tives to reflect the concerns that exist for that phase.

 2.2 Case Study

To illustrate the process of modeling and evaluating the performance of
an object-oriented design, we will use an example based on an auto-
mated teller machine (ATM). This example is based on a real-world
development project in which one of the authors participated. It has
been simplified for this presentation, and some details have been
changed to preserve anonymity.

The ATM accepts a bank card and requests a personal identification number
(PIN) for user authentication. Customers can perform any of three transac-
tions at the ATM: deposit cash to an account, withdraw cash from an
account, or request the available balance in an account. A customer may per-
form several transactions during a single ATM session. The ATM communi-
cates with a computer at the host bank, which verifies the customer-account
combination and processes the transaction. When the customer is finished
using the ATM, a receipt is printed for all transactions, and the customer’s
card is returned.

The following sections illustrate the application of the SPE process for
object-oriented systems to the ATM.

Chapter 2 SPE Quick View 33
2.2.1 Assess Performance Risk (Step 1)
The performance risk in constructing the ATM itself is small. Only one
customer uses the machine at a time, and the available hardware is more
than adequate for the task. Consequently, the amount of SPE effort on
this project will be small. However, the host software (considered later)
must deal with a number of concurrent ATM users, and response time
there is important, so a more substantial SPE effort is justified.

2.2.2 Identify Critical Use Cases (Step 2)
We begin with the use case diagram for the ATM shown in Figure 2-2.
As the diagram indicates, several use cases have been identified: Opera-

tor-Transaction (e.g., reloading a currency cassette), CustomerTransaction

(e.g., a withdrawal), and CommandFunctions (e.g., to go off-line).
Clearly, CustomerTransaction is the critical use case, the one that will
most affect the customer’s perception of the ATM’s performance.

Figure 2-2: ATM Use Cases

Customer

Operator

HostBank

ATM

operator
transaction

customer
transaction

command
functions

2.2.3 Select Key Performance Scenarios (Step 3)
We therefore select the CustomerTransaction as the first performance sce-
nario to consider. This scenario represents typical, error-free customer
transactions from the CustomerTransaction use case. Later, after we con-
firm that the architecture and design are appropriate for this scenario,
we will consider additional scenarios. To evaluate the scenario, we need a
specification for the workload intensity—that is, the number of Custom-

erTransactions or their arrival rate during the peak period.

34 Part I Introduction and Overview
Chapter 3
discusses
sequence
diagrams
and their
extensions.

Figure 2-3 shows a scenario for customer transactions on the ATM. The
notation used is a UML sequence diagram augmented with some addi-
tional features. These features allow us to denote repetition and choice.
They are indicated by the rectangular areas labeled loop and alt, respec-
tively. This scenario indicates that, after inserting a card and entering a
PIN, a customer may repeatedly select transactions which may be depos-
its, withdrawals, or balance inquiries. The rounded rectangles indicate
that the details of these transactions are elaborated in additional
sequence diagrams.

Figure 2-3: Customer Transaction Scenario

: User : ATM : HostBank

cardInserted

requestPIN

requestTransaction

alt [type]

processDeposit

processWithdrawal

processBalanceInquiry

terminateSession

aPIN

response

loop *[until done]

The scenario in Figure 2-3 combines the customer transactions of
deposit, withdrawal, and balance inquiry. We combine them because we
want to model what a customer does during an ATM session, and a cus-
tomer may request more than one transaction during a single session.
While we don’t know exactly which transaction(s) a user will request, we
can assign probabilities to each type of transaction based on reasonable
guesses or actual measurements of customer activities.

Chapter 2 SPE Quick View 35
Note: We could also represent the information in Figure 2-3 using a UML
activity diagram. However, we have found that the extended sequence
diagram notation is more familiar to software developers, and is easier to
translate to a software execution model.

2.2.4 Establish Performance Objectives (Step 4)
As a bank customer, what response time do you expect from an ATM?
Historically, performance objectives have been based on “time in the
(black) box,” that is, the time from the arrival of the (complete) request
to the time the response leaves the host computer. That approach was
used to separate things outside the control of the software (e.g., the time
for the user to enter information, network congestion, and so on) from
those that are more directly influenced by the software itself. If we take
this approach for the ATM, a reasonable performance objective would
be one second for the portion of the time on the host bank for each of
the steps processDeposit, processWithdrawal, and processBalanceInquiry.

However, for SPE we prefer to expand the scope to cover the end-to-end
time for a customer to complete a business task (e.g., an ATM session).
Then, the results of the analysis will show opportunities to accomplish
business tasks more quickly by reducing the number and type of interac-
tions with the system, in addition to reducing the processing “in the
box.” A reasonable performance objective for this scenario might be 30
seconds or less to complete the (end-to-end) ATM session.

2.2.5 Construct Performance Models (Step 5)
The models for evaluating the performance of the ATM are based on the
key scenarios identified earlier in the process. These performance scenar-
ios represent the same processing as the sequence diagrams using execu-
tion graphs.

Chapter 4
discusses
translating
scenarios to
execution
graphs.

Figure 2-4 shows the execution graph that corresponds to the ATM sce-
nario in Figure 2-3. The rectangles indicate processing steps; those with
bars indicate that the processing step is expanded in a subgraph. Figure
2-5 shows the expansion of the processTransaction step; the expansion of
the other steps is not shown here. The circular node indicates repetition,
while the jagged node indicates choice.

36 Part I Introduction and Overview
getCardInfo

getPIN

process
Transaction

terminate
Session

n

getTransaction

process
Withdrawal

process
Deposit

process
BalanceInquiry

Figure 2-4: ATM Execution
Graph

Figure 2-5: Expansion of
processTransaction

The execution graph in Figure 2-4 expresses the same scenario as the
sequence diagram in Figure 2-3: After inserting a card (to provide cus-
tomer information) and entering a PIN, a customer may repeatedly
select transactions, which may be deposits, withdrawals, or balance
inquiries. Here, the number of transactions that a customer may per-
form is indicated by the parameter n.

2.2.6 Determine Software Resource Requirements
(Step 6)

Software
resources
are
discussed in
more detail in
Chapters 4
and 7.

The types of software resources will differ depending on the type of
application and the operating environment. The types of software
resources that are important for the ATM are:

• Screens—the number of screens displayed to the ATM customer
• Host—the number of interactions with the host bank
• Log—the number of log entries on the ATM machine
• Delay—the relative delay in time for other ATM device process-

ing, such as the cash dispenser or receipt printer

Note: Software resource requirements are application-technology spe-
cific. Different applications will specify requirements for different types of
resources. For example, a system with a significant database component
might specify a software resource called “DBAccesses” and specify the

Chapter 2 SPE Quick View 37
requirements in terms of the number of accesses. We cover the identifica-
tion of applicable software resources in Part III.

We specify requirements for each of these resources for each processing
step in the execution graph, as well as the probability of each case alter-
native and the number of loop repetitions. Figure 2-6 shows the soft-
ware resource requirements for processWithdrawal.

Figure 2-6: Software Resource Requirements for processWithdrawal

getAccount

getAmount

request
Authorization

dispenseCash

waitFor
Customer

confirm
Transaction

Screen 1
Host 0
Log 1
Delay 5

Screen 0
Host 0
Log 0
Delay 10

Screen 0
Host 1
Log 1
Delay 0

Screen 0
Host 1
Log 1
Delay 0

Screen 1
Host 0
Log 0
Delay 0

Screen 1
Host 0
Log 0
Delay 0

2.2.7 Add Computer Resource Requirements (Step 7)
We must also specify the computer resource requirements for each software
resource request. The values specified for computer resource require-
ments connect the values for software resource requirements to device
usage in the target environment. The computer resource requirements

38 Part I Introduction and Overview
also specify characteristics of the operating environment, such as the
types of processors/devices, how many of each, their speed, and so on.

Table 2-1: Example Overhead Matrix

Devices CPU Disk Display Delay Net

Quantity 1 1 1 1 1

Service Units Sec. Phys. I/O Screens Units Msgs.

Screen 0.001 1

Host 0.005 3 2

Log 0.001 1

Delay 1

Service Time 1 0.02 1 1 0.05

Table 2-1 contains the computer resource requirements for the ATM
example. The names of the devices in the ATM unit are in the first row,
while the second row specifies how many devices of each type are in the
facility. The third row is a comment that describes the unit of measure
for the values specified for the software processing steps. The next four
rows are the names of the software resources specified for each process-
ing step, and the last row specifies the service time for the devices in the
computer facility.

The values in the center section of the table define the connection
between software resource requests and computer device usage. The
Display “device” represents the time to display a screen and for the
customer to respond to the prompt. The 1 in the Display column for the
Screen row means that each screen specified in the software model causes
one visit to the Display delay server. We arbitrarily assume this delay to
be one second (in the service time row). Similarly, each Host and Delay

specification in the software model results in a delay before processing
the next step. We assume the Host delay is 3 seconds; other delays are
specified in 1-second increments. Each Host request also sends 1 message
via the Net and receives 1 reply message. Each message takes an average
of 0.05 second. These values may be measured, or estimates could be
obtained by constructing and evaluating more detailed models of the
host processing required.

Chapter 2 SPE Quick View 39
The
connection
between
software
resources
and
processing
overhead is
discussed in
Chapter 4.

Thus, each value specified for a processing step in the software model
generates a demand for service from one or more devices in a facility.
The computer resource requirements define the devices used and the
amount of service needed from each device. The demand is the product
of the software model value times the value in the overhead matrix cell
times the service time for the column.

2.2.8 Evaluate the Models (Step 8)
Details of the
software
execution
model
solution for
the ATM are
presented in
Chapter 4.

We begin by solving the software model. This solution provides a “no
contention” result. Here, we find that the total end-to-end time for the
scenario is approximately 29 seconds, and most of that is due to the
delays at the ATM unit for customer interactions and processing. This is
a best-case result and, in this case, confirms that a single ATM will com-
plete in the desired time. Because it is close to exceeding the objective,
however, we may want to examine alternatives to reduce the end-to-end
time. We should also examine the sensitivity of the results to our esti-
mates. In addition, further studies will examine the host bank perfor-
mance when there are multiple ATMs whose transactions could produce
contention for computer resources. This will affect the time to handle
Host requests.

2.2.9 Verify and Validate the Models (Step 9)
Chapter 6
presents
details of the
system
execution
model
solution for
the ATM.

Chapter 8
discusses
performance
measure-
ment.

We need to confirm that the performance scenarios that we selected to
model are critical to performance, and confirm the correctness of the
workload intensity specifications, the software resource specifications,
the computer resource specifications, and all other values that are input
into the model. We also need to make sure that there are no large pro-
cessing requirements that are omitted from the model. To do this, we
will conduct measurement experiments on the operating environment,
prototypes, and analogous or legacy systems early in the modeling pro-
cess. We will measure evolving code as soon as viable. SPE suggests using
early models to identify components critical to performance, and imple-
menting them first. Measuring them and updating the model estimates
with measured values increases precision in key areas early.

40 Part I Introduction and Overview
 2.3 SPE in the Unified Software Process
To be effective, the SPE steps described in Section 2.2 should be an inte-
gral part of the way in which you approach software development. Inte-
grating SPE into your software process avoids two problems that we
have seen repeatedly. One is over-reliance on individuals. When you rely
on individuals to perform certain tasks instead of making them part of
the process, and then those individuals leave the company, their tasks are
frequently forgotten. The other problem is that if SPE is not part of the
process, it is easy to omit the SPE evaluations when time is tight or the
budget is limited.

SPE
deliverables
are
discussed in
Chapter 15.

Integrating SPE into the software development process is not difficult. It
is compatible with a wide variety of software process models, including
the waterfall model [Royce 1970], the spiral model [Boehm 1988], and
the Unified Process [Jacobson et al. 1999], [Kruchten 1999]. In each
case, integrating SPE into your software process requires that you define
the milestones and deliverables that are appropriate to your organiza-
tion, project, and the level of SPE effort required.

To illustrate the use of SPE in the software process, we will focus on the
Unified Process. This process is iterative and incremental, and its fea-
tures are typical of the process used for many object-oriented projects.

The Unified Process is divided into four phases: inception, elaboration,
construction, and transition. One complete pass through these four
phases constitutes a cycle that results in a product release. A product
evolves over time by repeating the four phases in additional cycles.

The Unified Process is risk-driven. That is, the focus of each iteration is
identified, prioritized, and performed based on risks. Risks are anything
that might endanger the success of the project, including the use of new
technologies, the ability of the architecture to accommodate changes or
evolution, market factors, schedule, and others. Because the ability to
meet performance objectives is a potentially significant risk, the Unified
Process suggests dealing with this and other risks early in the process,
when the decisions that you make are the most important and the most
difficult to change later. The approach used by the Unified Process is to
address important risks, such as performance, in the inception and

Chapter 2 SPE Quick View 41
elaboration phase, and to continue monitoring them during the
construction phase. Risks are identified and managed using iterations.

Integrating SPE into the Unified Process is straightforward. When
beginning a new project, you assess performance risk by evaluating the
extent of use of new technology, the experience of developers, the com-
plexity of the new software and operating environment, the scalability
requirements for anticipated volumes of usage, and other factors. When
planning another iteration, you evaluate the results of the previous itera-
tion to determine if there is a performance risk. Feasibility models can
quantify the achievability of performance goals. If there is a performance
risk, you plan and execute the current iteration to reduce that risk.

Note: In cases where performance is critical and the risk is high, you
might perform an iteration specifically to address performance concerns.
This iteration might involve, for example, implementing or prototyping a
critical component to provide measured values for model input, or to dem-
onstrate that the component under consideration can, indeed, be con-
structed to meet its performance objective.

In the inception and elaboration phases, your knowledge of the details
of the system’s architecture and design are sketchy. As a result, during
these phases, you will focus on best- and worst-case analyses using upper
and lower bounds for the resources required in each processing step in
the execution graph. Later, as your knowledge of the system’s details
improves, you can elaborate the model and refine your estimates.

 2.4 Performance Solutions
Performance
solutions are
discussed in
Part IV.

The quantitative techniques described in Section 2.2 form the core of
the SPE process. SPE is more than models and measurements, however.
Other aspects of SPE focus on creating software that has good perfor-
mance characteristics, as well as on identifying and correcting problems
when they arise. They include

• Applying performance principles to create architectures and
designs with the appropriate performance characteristics for
your application

• Applying performance patterns to solve common problems

42 Part I Introduction and Overview
• Identifying performance antipatterns (common performance
problems) and refactoring them to improve performance

• Using late life cycle techniques for tough problems

An overview of each of these aspects of SPE follows.

2.4.1 Performance Principles
Performance
Principles
are
presented in
Chapter 9.

Constructing and solving performance models quantifies the perfor-
mance of your software’s architecture and design. After you have mod-
eled a number of different designs, some of which have good
performance characteristics and some of which don’t, you will begin to
develop a feel for what works and what doesn’t. You will avoid those
design strategies that have repeatedly produced poor performance and,
consciously or unconsciously, incorporate those that consistently pro-
duce good performance into your standard “bag of tricks.”

A set of general principles for creating responsive systems helps shorten
that learning process. The performance principles help to identify
design alternatives that are likely to meet performance objectives.

The nine performance principles presented in Chapter 9 generalize and
abstract the knowledge that experienced performance engineers use in
constructing software systems. They help to identify design alternatives
that are likely to meet performance objectives.

2.4.2 Performance Patterns
Performance
Patterns are
presented in
Chapter 10.

A pattern is a common solution to a problem that occurs in many differ-
ent contexts [Gamma et al. 1995]. It provides a general solution that
may be specialized for a given context. Performance patterns describe
best practices for producing responsive, scalable software. Each perfor-
mance pattern is a realization of one or more of the performance princi-
ples. Chapter 10 presents seven performance patterns. These are new
patterns that specifically address performance and scalability.

2.4.3 Performance Antipatterns
Performance
Antipatterns
are
presented in
Chapter 11.

Antipatterns are conceptually similar to patterns in that they document
recurring solutions to common design problems [Brown et al. 1998].
They are known as antipatterns because their use (or misuse) produces
negative consequences. Antipatterns document common mistakes made

Chapter 2 SPE Quick View 43
during software development. They also document solutions, or refac-
torings, for these mistakes. Thus, antipatterns tell you what to avoid and
how to fix problems when you find them.

Performance antipatterns document recurring performance problems
and their solutions. They complement the performance patterns by doc-
umenting what not to do and how to fix a problem when you find one.
This approach is particularly useful for performance because good per-
formance is the absence of problems. By illustrating performance prob-
lems and their causes, performance antipatterns help build performance
intuition.

2.4.4 Implementation Solutions
Implementa-
tion solutions
are
presented in
Chapter 12.

If you have a poor architecture or design, it is unlikely that any amount
of clever coding will enable you to achieve your performance objectives.
This does not mean that later life cycle activities can be ignored, how-
ever. In fact, it is necessary to manage performance throughout the soft-
ware development process to ensure that you will meet your objectives.

In an ideal world, once you have constructed and solved the SPE models
to verify that your proposed architecture and design will meet your per-
formance objectives, most of your work would be done. Your primary
focus during the later phases of development would be to monitor the
evolving software to confirm that the performance is as predicted, or to
detect and correct any deviations that arise. For many systems, this may
be all that is needed.

The real world is sometimes not so cooperative, however, so it is often
necessary to carefully manage performance throughout the software
development cycle. For example, some systems have a high risk of per-
formance failure, or have other constraints (e.g., regulatory constraints
for safety-critical systems) that require closer monitoring throughout
implementation, along with careful attention to detailed design and
coding activities.

You may find yourself with a system that has already been implemented
and has performance problems. In this case, it is too late to apply the
SPE techniques covered in other chapters from scratch. Instead, you
must start with what you have and try to make it work.

44 Part I Introduction and Overview
Our
systematic
approach to
tuning is
presented in
Chapter 12.

A systematic strategy for tuning poorly performing software that is based
on quantitative data helps you to focus on the areas with the highest
payoff, rather than expending effort on improvements that have a negli-
gible overall effect.

Once you have identified the causes of the problems, you can correct
them by applying the performance principles, using one of the perfor-
mance patterns. Alternatively, if you have identified a performance anti-
pattern, you can apply one of its refactorings. Chapter 12 discusses
specific solutions for many common problems, as well as solutions
specifically adapted for object-oriented software and the C++ and Java
languages.

 2.5 Summary
The SPE process focuses on the system’s use cases and the scenarios that
describe them. This focus allows you to identify the workloads that are
most significant to the software’s performance, and to focus your efforts
where they will do the most good.

SPE begins early in the software development process to model the per-
formance of the proposed architecture and high-level design. The mod-
els help to identify potential performance problems when they can be
fixed quickly and economically.

Performance modeling begins with the software model. You identify the
use cases that are critical from a performance perspective, select the key
scenarios for these use cases, and establish performance objectives for
each scenario. To construct the software model, you translate the
sequence diagram representing a key scenario to an execution graph.
This establishes the processing flow for the model. Then, you add soft-
ware and computer resource requirements and solve the model.

If the software model solution indicates that there are no performance
problems, you can proceed to construct and solve the system model to
see if adding the effects of contention reveals any problems. If the soft-
ware model indicates that there are problems, you should deal with these
before going any further. If there are feasible, cost-effective alternatives,
you can model these to see if they meet the performance goals. If there
are no feasible, cost-effective alternatives, you will need to modify your

Chapter 2 SPE Quick View 45
performance objectives, or perhaps reconsider the viability of the
project.

To be effective, the SPE steps described in this chapter should be an
integral part of the way in which you approach software development.
SPE can easily be incorporated into your software process by defining
the milestones and deliverables that are appropriate to your organiza-
tion, the project, and the level of SPE effort required. This chapter pre-
sented an overview of how SPE can be integrated into the Unified
Software Process.

The quantitative techniques described in Section 2.2 form the core of
the SPE process. SPE is more than models and measurements, however.
Other aspects of SPE focus on creating software that has good perfor-
mance characteristics, as well as on identifying and correcting problems
when they arise. They include

• Applying performance principles to create architectures and
designs with the appropriate performance characteristics for
your application

• Applying performance patterns to solve common problems
• Identifying performance antipatterns (common performance

problems) and refactoring them to improve performance
• Using late life cycle techniques to ensure that the implementation

meets performance objectives

By applying these techniques, you will be able to cost-effectively build
performance into your software and avoid the kinds of performance fail-
ures described in Chapter 1.

	Chapter 2
	SPE Quick View
	2.1 SPE Process for Object-Oriented Systems
	Chapter 15 describes these steps in more detail.
	Figure 2-1: The SPE Process for Object-Oriented Systems
	1. Assess performance risk: Assessing the performance risk at the outset of the project tells you how much effort to put into SP...

	Use cases are discussed in Chapter 3.
	2. Identify critical use cases: The critical use cases are those that are important to the operation of the system, or that are ...

	Sequence diagrams and their extensions are discussed in Chapter 3.
	3. Select key performance scenarios: It is unlikely that all of the scenarios for each critical use case will be important from ...

	Performance objectives are discussed in Chapter 7.
	4. Establish performance objectives: You should identify and define performance objectives and workload intensities for each sce...

	Chapter 4 discusses execution graphs.
	5. Construct performance models: We use execution graphs to represent software processing steps in the performance model. The sequence- diagram representations of the key performance scenarios are translated to execution graphs.

	Gathering data on software and computer resource requirements is discussed in Chapter 7 and Part III.
	6. Determine software resource requirements: The processing steps in an execution graph are typically described in terms of the ...

	Resource requirements are discussed in Chapter 7.
	7. Add computer resource requirements: Computer resource requirements map the software resource requirements from step 6 onto th...

	Performance models and their solutions are discussed in Chapters 4, 5 and 6.
	8. Evaluate the models: Solving the execution graph characterizes the resource requirements of the proposed software alone. If t...

	Model verification and validation is discussed in Chapter 15.
	9. Verify and validate the models: Model verification and validation are ongoing activities that proceed in parallel with the co...

	Late life cycle and post deployment SPE activities are discussed in Chapter 15.

	2.2 Case Study
	2.2.1 Assess Performance Risk (Step 1)
	2.2.2 Identify Critical Use Cases (Step 2)
	Figure 2-2: ATM Use Cases

	2.2.3 Select Key Performance Scenarios (Step 3)
	Chapter 3 discusses sequence diagrams and their extensions.
	Figure 2-3: Customer Transaction Scenario
	2.2.4 Establish Performance Objectives (Step 4)
	2.2.5 Construct Performance Models (Step 5)

	Chapter 4 discusses translating scenarios to execution graphs.
	Figure 2-4: ATM Execution Graph
	Figure 2-5: Expansion of processTransaction
	2.2.6 Determine Software Resource Requirements (Step 6)

	Software resources are discussed in more detail in Chapters 4 and 7.
	Figure 2-6: Software Resource Requirements for processWithdrawal
	2.2.7 Add Computer Resource Requirements (Step 7)
	Table 2-1: Example Overhead Matrix

	The connection between software resources and processing overhead is discussed in Chapter 4.
	2.2.8 Evaluate the Models (Step 8)

	Details of the software execution model solution for the ATM are presented in Chapter 4.
	2.2.9 Verify and Validate the Models (Step 9)

	Chapter 6 presents details of the system execution model solution for the ATM. Chapter 8 discusses performance measure- ment.

	2.3 SPE in the Unified Software Process
	SPE deliverables are discussed in Chapter 15.

	2.4 Performance Solutions
	Performance solutions are discussed in Part IV.
	2.4.1 Performance Principles

	Performance Principles are presented in Chapter 9.
	2.4.2 Performance Patterns

	Performance Patterns are presented in Chapter 10.
	2.4.3 Performance Antipatterns

	Performance Antipatterns are presented in Chapter 11.
	2.4.4 Implementation Solutions

	Implementa- tion solutions are presented in Chapter 12.
	Our systematic approach to tuning is presented in Chapter 12.

	2.5 Summary

