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Abstract

There is growing recognition of the importance of the role of architecture in
determining the quality of a software system. While a good architecture cannot
guarantee attainment of quality goals, a poor architecture can prevent their
achievement. It is particularly important to evaluate the performance of a distributed
system architecture.  Errors made early can cause excessive overhead for
communication and coordination and they are far more difficult – if not impossible – to
correct with tuning.  This paper discusses assessment of the performance characteristics
of distributed software architectures in early life cycle stages.  The techniques are
described and illustrated with a simple example.

1.  Introduction

Architectural decisions are among the earliest made in a distributed software
development project and can have the greatest impact on software quality.  Thus, it is
important to support assessment of quality attributes at the time these decisions are
made. Our work focuses on early assessment of software architectures to ensure that
they will meet non-functional, as well as functional, requirements. For this paper, we
focus on techniques for the performance assessment of a distributed software
architecture since many distributed systems fail to meet performance objectives when
they are initially implemented.

Performance failures result in damaged customer relations, lost productivity for users,
lost revenue, cost overruns due to tuning or redesign, and missed market windows.
Moreover, “tuning” code to improve performance is likely to disrupt the original
architecture, negating many of the benefits for which the architecture was selected.
Finally, it is unlikely that “tuned” code will ever equal the performance of code that has
been engineered for performance. In the worst case, it will be impossible to meet
performance goals by tuning, necessitating a complete redesign or even cancellation of
the project.

Our experience is that most performance failures are due to a lack of consideration of
performance issues early in the development process, in the architectural design phase.
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Poor performance is more often the result of problems in the architecture rather than in
the implementation. As Clements points out:

 “Performance is largely a function of the frequency and nature of inter-component
communication, in addition to the performance characteristics of the components
themselves, and hence can be predicted by studying the architecture of a system.”
[CLEM96]

Thus it is particularly important to evaluate the performance of distributed system
architectures.  Errors made early can cause excessive overhead for communication and
coordination and they are far more difficult – if not impossible – to correct with tuning.
Our approach focuses on the generation and evaluation of design alternatives to allow
assessment of the trade-offs associated with various architectural decisions.

In this paper we describe the use of software performance engineering (SPE) techniques
to perform early assessment of a distributed software architecture to determine whether
it will meet performance objectives. The use of SPE at the architectural design phase can
help developers select a suitable architecture. Continued application of SPE techniques
throughout the development process helps insure that performance goals are met.

The remainder of the paper explains the SPE approach to modeling distributed systems.
and illustrates the process with a simple example.

2. SPE Process for Distributed Systems

At the architectural level of design, the SPE process for distributed systems calls for
using deliberately simple models of software processing that are easily constructed and
solved to provide feedback on whether the proposed software is likely to meet
performance goals.  Thus our approach is to first create the software execution models
that explicitly represent synchronization points among distributed processes and
estimate the delay to receive results from a remote process.  Later in development, more
realistic models use advanced system execution model solutions to connect the
distributed processes.  The advanced models are described in a companion paper
[SMIT98c].

The motivation for using approximate models early in development is illustrated in
Figure 1 - a diagram with N Clients connected to a Server via a Network. Each client is
modeled with a system model such as the one at the top of the diagram.  User requests
are processed on the Client’s CPU and disks.  At some point in the processing, the
Client makes a request of a Server.  It is transmitted via a Network (simplified to a
single queue in the center section of this example), then sent to the Server.  The server
model at the bottom of the diagram is also a simple system model with a CPU and Disk.
The request is processed on the Server’s CPU and Disks, then returned to the Network.
When it exits the network it returns to the Client making the request.

This picture is a greatly over-simplified view of a particular interaction in a distributed
system, however, the resulting simulation model is still complex - containing a large
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number of total queue-servers and
workloads when all N clients are
included -- and the solution time is too
long to be used to compare many
alternatives.  Early in the development
process, we are not interested in the
intricacies of this interaction, but rather
with the feasibility and desirability of
various architecture and design
alternatives.  Thus to keep the models
at this stage simple so we can study as
many alternatives as possible, we will
construct each of the three system
models -- clients, servers and networks
-- separately and estimate the delays for
external system interactions. This
approximation is described in the next section.

3. Approximate models

This section explains the general strategy for separating the combined model into
separate models.  In the following sections we use terminology for  synchronization and
communication in distributed systems that use a CORBA compliant Object Request
Broker (ORB).1 The synchronization and communication terms are particular to CORBA
distributed object technology. However these primitives are typical of most distributed
systems.  Even though the illustrations and discussions describe communication in
terms of “client” and “server” processes, they apply to more general distributed
systems.  The roles of “client” and “server” refer to a particular interaction and may be
reversed in subsequent interactions.  In addition, the “server” process may interact with
other processes, and multiple types of synchronization may be combined.

We consider three types of synchronization/coordination mechanisms between objects:

• Synchronous invocation:  The sender invokes the request and blocks waiting for
the response (a CORBA  invoke call).

• Deferred synchronous call:  The sender issues the request and continues
processing. Responses are retrieved when the sender is ready (a CORBA send
call, followed by a get_response call to obtain the result).

                                                
� %14$# KU VJG %QOOQP 1DLGEV 4GSWGUV $TQMGT EQORQPGPV QH VJG 1DLGEV /CPCIGOGPV )TQWRIU UVCPFCTF HQT
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Figure 1 “Simple” Distributed System Model
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• One-way (or Asynchronous) call:  The sender issues the request and continues
processing; there is no response (a CORBA send_oneway call).

SPE model extensions to handle these performance issues are discussed next.

3.1 Synchronous Invocation

Figure 2 shows processing flow when a client process
makes two synchronous requests to a server process.  The
“blips” in each column represent processing activity on
the corresponding facility.  The absence of a blip indicates
that the corresponding facility is not processing this
request – shared processing nodes (the Network and
Server) may process other requests at those times.
Processing for the first request is initiated on the Client;
the synchronous request is transmitted via the Network;
the Server processes the request and sends a reply; the
Network processes the reply; the Client receives the reply and begins processing that
will make another synchronous request. And so on.

Note that we do not explicitly represent overhead (CORBA - ORB) processing that
might occur for run-time binding of the Client and Server processes.  This illustration
assumes that the processes are bound earlier.  Analysts could model the overhead
explicitly as another column in these diagrams, or implicitly by adding processing
overhead for each remote request.

This profile  is the basis for the first approximation.  We create a separate performance
scenario for each process, specify resource requirements corresponding to the “blips,”
and estimate the delay between “blips.”  The models may be iterative - the solution of
each independent performance scenario quantifies its processing time.  The processing
time for the “dependent blips” can be used to refine the estimate of the delay between
blips.  In these illustrations we arbitrarily show the client and server objects on separate
processors and the invocations must be transmitted through the network.  If they reside
on the same processor there is no delay for the network “blips.”

This model is first solved without contention to determine if this optimistic model
meets performance objectives.  After correcting any problems, the system execution
model solution quantifies additional delays due to contention from other work.

3.2 Deferred Synchronous Communication

Figure 3 shows one possibility for the processing flow when the client sends a deferred
synchronous request to the server.  The client process issues the request and continues
processing.  The processing on the Network and Server processing nodes is the same as
before.  At some point in the processing the Client needs the result from the server
before it may proceed.  The dashed line below the first Client “blip” represents the time
that the Client must wait for the request to be completed and returned.  The second
possibility is that the deferred synchronous request is completed before the Client needs

C lien t N e tw ork S erver

Figure 2.  Synchronous
Processing Flow
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the result to proceed.  A figure representing this possibility would omit the dashed line
and show a continuous blip in the Client column.

The model for deferred synchronous communication
is similar to the previous one.  We create a separate
performance scenario for each process, specify
resource requirements corresponding to the “blips,”
estimate the delay between “blips,” and estimate the
delay corresponding to the dashed line.  If the second
possibility holds, the delay estimate is zero.  These
models may also be iterative with solutions from one
model refining the delay estimates for the next
solution.

3.3 Asynchronous Communication

Figure 4 shows one possibility for the processing flow when the client makes an
asynchronous request from the server.  The client process makes the request and
continues processing.  The processing on the Network and Server processing nodes for
transmitting and processing the request is the same as before, but there is no reply.

The model for asynchronous communication also has a
separate performance scenario for each process.
Analysts specify resource requirements corresponding
to the “blips.”  There is no need to estimate Client
delay because there is no response to the asynchronous
invocation.  If the Server model is an open model, we
estimate the arrival rate of asynchronous requests; if
they are closed models, we estimate the time between
requests.  Both estimates come from the processing
time of the Client process; iterative solutions may be used to refine estimates.

3.4 Approximate Software Execution Models

We use the following steps to create an approximate model of software
synchronization:

1. Create a separate performance scenario for the key processes in a distributed system

2. Insert special nodes into the execution graph to represent the particular type of
synchronization/communication 2

3. Estimate the delay for the called process to respond to the request

4. Solve the models.
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Figure 3. Deferred Synchronous
Processing Flow

C lien t N e tw ork S erver

Figure 4. Asynchronous
Processing Flow
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Later, the advanced system
model connects the processes
on the various facilities to
quantify the synchronization
costs and delays.

Figure 5 shows the execution
graph nodes that represent the
three types of
synchronization.  The
appropriate node from the left
column of the figure is
inserted in the execution
graph for the calling scenario.
The called scenario represents
the synchronization point
with one of the nodes from the
right column depending on whether or not it sends a reply.  The synchronization occurs
in the calling process so the called process need not distinguish between synchronous
and deferred synchronous calls.  Any of the rectangular nodes may be expanded to
show processing steps that occur between the dashed arrows or in connection with
asynchronous calls.  The expansion may contain other synchronization steps.  The
called process may execute additional processing steps after the reply is sent.

Next, the analyst specifies resource requirements for the processing nodes, the
estimated delay for synchronization nodes, and the number of messages sent via the
network.  These steps are illustrated with the simple example in the next section.

4.  Example

The example is a simple interaction to take and process a NewOrder. Developers often
use scenarios at the architecture stage in development to describe the interaction
between components in a distributed system.  As described in [WILL95] scenarios
represent a common point of departure between object-oriented requirements or design
models and SPE models.   Scenarios may be represented in a variety of ways [JACO92],
[WILL94].  Here, we use Message Sequence Charts (MSCs) to describe them.  The MSC
notation is specified in ITU standard Z.120 [ITU96].  Several other notations used to
represent scenarios are based on MSCs (examples include:  Event Flow Diagrams
[RUMB91]; Interaction Diagrams [JACO92]; and UML Sequence Diagrams  [RATI97]).
However, none of these incorporates all of the features of MSCs needed to establish the
correspondence between software scenarios and performance scenarios.

For SPE, we translate the architecture-stage scenario described with an MSC into a
performance scenario represented by an execution graph.  This example uses the SPE•ED
performance engineering tool to evaluate the resulting model. Other tools are available,

Calling process: Ca lled process:

N am e

N am e

N am e

N am e

N am e

S ynchronous ca ll:
ca lle r w aits  fo r rep ly

D efe rred  synchronous ca ll:
p rocess ing  occurs
w a it fo r reply

A synchronous ca ll:
no  rep ly

R ep ly

N o rep ly

Figure 5.  Execution Graph Nodes for Software
Synchronization
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such as [BEIL95], [GOET90], [TURN92], but the model translation would differ for those
tools that do not use execution graphs as their modeling paradigm.  The modeling
approach described in the following sections is partially determined by our tool choice.

The architectural tradeoffs that we consider include:

• the frequency and size of communication among processes

• the assignment of software components to processes

• the assignment of processes to processors

• three types of synchronization between processes

• the number of threads required for server processes

This example demonstrates how to construct a performance model that reflects the
performance of a particular combination of choices.  It does not consider architectural
alternatives or how to correct problems in architectures to resolve performance
problems.  Other related papers address these issues [SMIT98c],[SMIT98],[WILL98].

4.1 Example Scenario

This example is a hypothetical set of interactions required to take and process a new
order.  It is based on an actual case study but is simplified to focus on modeling
techniques for representing the distributed processing characteristics of the example.

Figure 6 illustrates a high-level MSC for the NewOrder example. Each object,
component, or person that participates in the scenario is represented by a vertical line
or axis.  The axis is labeled with its name (e.g., anOrderTaker).  The vertical axis
represents relative time which increases from top to bottom; an axis does not include an
absolute time scale.  Interactions between components are represented by horizontal
arrows.  The rounded rectangle is an “MSC reference” which refers to another MSC.
The use of MSC references allows horizontal expansion of processing steps.  For
example, the interactions
required for enterData  are
represented in another MSC
(not included in this
example).

 

aC u stom er anO rderTake r the D ataba se anO rderProcess

ack

que ryD B

reque st

upd ateD B

m sc new O rder

enterD ata

trig gerO rde rP ro cess

Figure 6.  New Order Scenario
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Next, the interaction represented in the MSC is translated into one or more performance
scenarios modeled with execution graphs.  This model will contain three scenarios – we
do not create a scenario for aCustomer, but we create a scenario for each of the other
three columns. We first examine the scenario that executes on a Client processor.  Later
sections present the two scenarios that execute on the Server processor.

The first performance scenario we consider is the processing represented in
anOrderTaker column.  The performance scenario begins with EnterData 3 followed by a
call to QueryDatabase on the  Server.  This is represented in the figure with a
synchronous call node.  The processing that occurs on the Client after completion of the
Query before the Update is represented in the graph with the InitiateOrder node. Next is
the synchronous call to UpdateDatabase on the Server.  The last processing step is
TriggerOrderProcess represented by the asynchronous call node.

The next step is to specify resource requirements for each processing step. The key
resources that we examine in this model are the CPU time for the  processing, the
number of I/Os to the local database (DB), the number of messages sent among
processors (Msgs), and the estimated Delay in seconds for the “blips” on other
processors until the message-reply is
received.  These values are also shown in
Figure 7.

4.2 Overhead Matrix

In SPE•ED, the computer resource
requirements for each software resource
request are specified in an overhead
matrix stored in the SPE database.
Figure 8 shows the overhead matrix for
this case study.   The software resource
names are in the left column of the
matrix; the devices in the facility are in
the other columns. The device names and
quantity are in the top section of the
matrix.  The CPU, Disk, and Delay
devices are unique to this Client facility.
The far right column represents the
network “device” GlNet.  It is shared by
all computer processing facilities in the
model.  The values in the middle part of
the matrix specify the amount of
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Figure 7. Client process software execution
model
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computer device processing
required for each software
resource request.

For example, the matrix
specifies that each Msg in the
software model causes one visit
to this network device.  Its
service time per message is 0.1
seconds.  Each Msg in the
software model also causes 25K
instructions to be executed on
the CPU and 1 Disk I/O (for
logging).  The CPU values are
in thousands of instructions.
Each DB visit specified in the
software model causes 500K instructions to be executed on the CPU and 4 I/Os to the
Disk device.  The delay in the software model is specified in visits; each visit represents
a delay of 0.5 seconds.  These values are derived from measurement experiments on the
target platform, or estimated in a performance walkthrough.  They are derived once
and reused for all studies of performance scenarios that execute in that environment.

In the client scenario, we estimate a 0.5 second delay for each synchronous call to the
Database Server process, and specify that one message is sent via the GlNet device.
There is no delay for the asynchronous TriggerOrderProcess, and one message is sent via
the GlNet device.

The model solution in Figure 9
shows that the elapsed time for the
Client process with no contention is
3.85 seconds, most of which is for
local database processing.  The
synchronization with other
processes is 0.3 seconds for sending
messages via the network and an
estimated one second delay for the
two synchronous calls.  There are
no particular performance
problems.

4.3 Database Server Scenario

Figure 10  shows the processing
steps for the second performance
scenario derived from theDatabase
column.  The top-level model has a

Figure 8.  Overhead matrix

Figure 9.  Software Model Results
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single node for a called process with a reply.   Its basic node is expanded to represent 3
types of calls shown in the subgraph: Query, Update, and Write.  In this scenario the
probability of a query is 0.5, an update is 0.5 and a write is 0.

The software execution model solution (not shown) results in an elapsed time of 0.24
seconds.  The results  indicate that this example has no particular performance problem.

To evaluate the effect of contention due to DB Server requests from multiple clients, we
will evaluate the system execution model. We will start with one thread for the server
process, and increase the number if threads if clients have an excessive wait for the
server process to complete previous requests.4  This will increase device contention
because the concurrent processes compete for facility devices.  The think time is the
estimated time in seconds between requests from clients.  It is obtained by estimating
the time between the “blips” and dividing that number by the number of clients making
requests. In some cases the think time may be calculated from a throughput goal:
(1/Tput) is the time between requests. The results (not shown) indicate that with one
thread the residence time per request is 0.24 seconds (.1 secs. for network messages, .14
secs for Disk I/O, and a neglible amount of CPU time).
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Figure 10. Server processing steps
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4.4 Order Process Scenario

The scenario in Figure 11 represents the
column for anOrderProces.  It executes as
a result of the TriggerOrderProcess
asynchronous call in the Client process.
This example summarizes the scenario
with a single Called process node that
sends no results.   The scenario also
executes on the Server facility. This
scenario has one thread with an
estimated time between arrivals of 5
sec.  The contention solution results in
an elapsed time of 1.6 seconds.  Again
there are no particular performance problems.

4.5 System Execution Model

The system execution model in Figure 12 shows that the Client process executes on the
Client facility, and the DB Server Process and Order Process both execute on the Server
facility.  The system model global specifications to the right of each scenario show the
service level specifications for each scenario: the priority and arrival rate or number of
threads (users) and the time between arrivals (think).

The solution to the system model shown in Figure 13 shows the response time for each
scenario, and the elapsed time at each facility device in the template below the scenario
symbol. Note the GlNet device utilization is 4% (shown at the bottom of the facility
picture next to the network symbol).  This is the combined use of this device by all
scenarios.  The elapsed time for network communication, including the time in the

Figure 11. ProcessOrder Scenario

Figure 12.  System Execution Model Figure 13.  System Execution Model Results
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queue, is shown in the bottom row of the facility device template below each scenario:
0.308 sec. for the Client process, 0.097 for the DB Server Process, and 0 for Order Process
(there is no reply).

Note that this solution uses the delay estimates in the software model for the time for
inter-process synchronization, the solution may be iterative.  For example, we estimated
the time for the DB server process (excluding network time) to be 0.5 seconds.  This
solution shows an average time of 0.76 seconds.  The advanced system model solution
will connect the processes and compute the delay time.  These approximate results are
generally sufficient to study most software architecture and design alternatives such as
the extent of inter-process communication, the assignment of scenarios to facilities, the
number of threads required, etc.

4.6 Advanced System Model

The advanced system model solution executes the system model simulation and
actually makes calls to other processes at the point in the execution where the special
synchronization nodes are placed.  If the called process is busy, the calling process waits
in a queue.  In addition to the standard results reported in the system model solution,
the following are reported for the synchronization steps:

• mean, minimum, and maximum, and variance response time for called processes

• mean and maximum number of requests and the mean time in the queue for called
processes

• throughput of called processes.

These results indicate when processing requirements should be reduced or the number
of threads increased to alleviate performance problems due to synchronization.  They
also indicate what proportion of the total elapsed time depends on other processes.  The
system model solution will suffice for most of these analyses early in development.  The
advanced system model solution gives more insight into situations when mean values
may be fine, but queue lengths may build in some circumstances and lead to
unacceptable performance.  These models are described in detail in the companion
paper [SMIT98c].

5.  Summary

This paper discussed the strategy for creating simple initial models of distributed
system processes.  Approximation techniques estimate the synchronization and
communication delays.  Later in development advanced system execution models
provide more realistic performance data for intricate processing details.

The execution graph nodes that represent the calling and called processing steps were
explained.  Then a simple example demonstrated the process of creating, specifying
values for,  and evaluating the performance of scenarios that contain these nodes.  The
solutions demonstrate the distributed system performance data of interest.
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A comprehensive case study that includes these approximate models and an advanced
system execution model is in the companion paper [SMIT98c].  It is based on an actual
case study and substantiates the importance of applying these SPE techniques in the
development life cycle when the architecture is formulated.

Another recent paper specifies the information required to perform architecture
assessments and how it can be extracted from architectural descriptions [WILL98].  The
combination of this work leads us to the conclusion that much of the needed
information is not contained in current architectural documentation and must be
gathered in a performance walkthrough or using other supplemental techniques.  We
are also convinced that for distributed systems much of this information, particularly
the assignment of processing steps to processes and of processes to computer facilities,
and whether or not multiple threads are necessary, should be determined by
performance assessments and the documentation should be produced afterwards.  Thus
SPE should play a key role in the development of distributed systems from the early
planning stages and throughout development.
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