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Abstract

Although object-oriented methods have been shown to help construct software systems that are
easy to understand and modify, have a high potential for reuse, and are relatively quick and
easy to implement, concern over performance of object-oriented systems represents a
significant barrier to its adoption.  Our experience has shown that it is possible to design object-
oriented systems that have adequate performance and exhibit the other qualities, such as
reusability, maintainability, and modifiability, that have made OOD so successful.  However,
doing this requires careful attention to performance goals throughout the life cycle.  This paper
describes the use of SPE•ED, a performance modeling tool that supports the SPE process, for
early life cycle performance evaluation of object-oriented systems.  The use of SPE•ED for
performance engineering of object-oriented software is illustrated with a simple example.

1.0  Introduction
Object-oriented development (OOD) methods have been shown to be valuable in
constructing software systems that are easy to understand and modify, have a high
potential for reuse, and are relatively quick and easy to implement.  Despite the
demonstrated successes of OOD, many organizations have been reluctant to adopt
object-oriented techniques, largely due to concerns over performance.

Our experience has shown that it is possible to design object-oriented systems that
have adequate performance and exhibit the other qualities, such as reusability,
maintainability, and modifiability, that have made OOD so successful [Smith and
Williams, 1993].  However, doing this requires careful attention to performance goals
throughout the life cycle.  Failure to build-in performance from the beginning can
result in the need to “tune” code, destroying the benefits obtained from a careful
object-oriented design.  In addition, it is unlikely that “tuned” code will ever equal the
performance of code that has been engineered for performance.  In the worst case, it
will be impossible to meet performance goals by tuning, necessitating a complete re-
design or even cancellation of the project.

Software Performance Engineering (SPE) for object-oriented systems is especially
difficult since functionality is decentralized.  Performing a given function is likely to
require collaboration among many different objects from several classes.  These



interactions can be numerous and complex and are often obscured by polymorphism
and inheritance, making them difficult to trace.  Distributing objects over a network
can compound the problem.

One of the principal barriers to the effective use of SPE with OOD is the gap between
the designers who need feedback on the performance implications of design decisions
and the performance specialists who have the skill to conduct comprehensive
performance engineering studies with typical modeling tools.  This gap means that
extra time and effort is required to coordinate design formulation and analysis,
effectively limiting the ability of designers to explore design alternatives.

The ideal long-term solution to providing SPE assessments during the design stage is
an evolution of today’s CASE tools to provide decision support for many facets of the
design including correctness, completeness, performance, reliability, and so on.  This
approach, however, is not currently practical.  It is too expensive for each CASE
vendor to create their own modeling/analysis component.  Therefore, we seek a near-
term capability to interface CASE tools to existing modeling tools.  A previous paper
defined the SPE information that CASE tools must collect [Williams and Smith,
1995].  This paper illustrates the translation from Object-oriented design models into
performance models, and the use of the tool, SPE•ED™,1 for early life cycle
performance evaluation of object-oriented systems.  SPE•ED is a performance
modeling tool that supports the SPE process described in [Smith, 1990]. SPE•EDs
software processing focus and automatic model generation make it easy to evaluate
OOD architecture and design alternatives.  Other features, such as the SPE project
database and presentation and reporting features, support aspects of the SPE process
other than modeling.

The paper begins by reviewing related work.  This is followed by an overview of
SPE•ED.  We then present an overview of the process of software performance
engineering for object-oriented systems.  A simple example illustrates the process.

2.0  Related Work
Object-oriented methods typically defer consideration of performance issues until
detailed design or implementation (see e.g., [Rumbaugh, et al., 1991], [Booch, 1994]).
Even then, the approach tends to be very general.  There is no attempt to integrate
performance engineering into the development process.

Some work specifically targeted at object-oriented systems has emerged from the
performance community.  Smith and Williams [Smith and Williams, 1993] describe
performance engineering of an object-oriented design for a real-time system.
However, this approach applies general SPE techniques and only addresses the
specific problems of object-oriented systems in an ad hoc way.

1 SPE•ED™ is a trademark of Performance Engineering Services.



Hrischuk et. al. [Hrischuk, et al., 1995] describe an approach based on constructing an
early prototype which is then executed to produce angio traces .  These angio traces
are then used to construct workthreads (also known as timethreads or use case maps
[Buhr and Casselman, 1992],[Buhr and Casselman, 1994], [Buhr and Casselman,
1996]), which are analogous to execution graphs.  Workthreads provide empirical
information about traversal frequencies for data-dependent choices and loops.
Service times are estimated.  This differs from the approach described here in that
scenarios are derived from prototype execution rather than from the design and the
system execution model is then generated automatically from the angio traces.

Baldassari et.al. propose an integrated object-oriented CASE tool for software design
that includes a simulation capability for performance assessment [Baldassari, et al.,
1989, Baldassari and Bruno, 1988].  The CASE tool uses petri nets for the design
description language rather than the general methods described above, thus the design
specification and the performance model are equivalent and no translation is
necessary.  Using these capabilities requires developers to use both the PROTOB
method and CASE tool.

This paper uses the SPE tool SPE•ED to conduct the performance analysis.  Other
software modeling tools are available, such as [Beilner, et al., 1988, Beilner, et al.,
1995, Goettge, 1990, Grummitt, 1991, Rolia, 1992, Turner, et al., 1992].  The
approach described here could be adapted to other tools.  Adaptation is necessary for
these other tools that do not use execution graphs as their model paradigm.

3.0  SPE•ED Overview
This section gives a brief overview of the features of the SPE tool that make it
appropriate for OOD (and other) evaluations throughout their development life cycle.

3.1  Focus
SPE•ED   's focus is the software performance model.  Users create graphical models of
envisioned software processing and provide performance specifications.  Queueing
network models are automatically generated from the software model specifications.
A combination of analytic and simulation model solutions identify potential
performance problems and software processing steps that may cause the problems.
SPE•ED facilitates the creation of (deliberately) simple models of software processing
with the goal of using the simplest possible model that identifies problems with the
software architecture, design, or implementation plans.  Simple models are desired
because in the early life cycle phase in which they are created:

• developers seldom have exact data that justifies a more sophisticated model,
• they need quick feedback to influence development decisions,
• they need to comprehend the model results, especially the correlation of the

software decisions to the computer resource impacts.



3.2  Model description
Users create the model with a graphical user interface streamlined to quickly define
the software processing steps.  The user's view of the model is a scenario, an
execution graph of the software processing steps [Smith, 1990].  Software scenarios
are assigned to the facilities that execute the processing steps. Models of distributed
processing systems may have many scenarios and many facilities.  Users specify
software resource requirements for each processing step.  Software resources may be
the number of messages transmitted, the number of SQL queries, the number of SQL
updates, etc.  depending on the type of system to be studied and the key performance
drivers for that system.  A performance specialist provides overhead specifications
that specify an estimate of the computer resource requirements for each software
resource request.  These are specified once and re-used for all software analysis that
executes in that environment.  This step is described in more detail later.

3.3  Model solution
SPE•ED  produces analytic results for the software models, and an approximate,
analytic MVA solution of the generated queueing network model.  A simulation
solution is used for generated queueing network models with multiple software
scenarios executing on one or more computer system facilities.2  Thus SPE•ED
supports hybrid solutions - the user selects the type of solution appropriate for the
development life cycle stage and thus the precision of the data that feeds the model.
There is no need for a detailed, lengthy simulation when only rough guesses of
resource requirements are specified.

3.4  Model results
The results reported by SPE•ED  are the end-to-end response time, the elapsed time for
each processing step, the device utilization, and the amount of time spent at each
computer device for each processing step.  This identifies both the potential computer
device bottlenecks, and the portions of the device usage by processing step (thus the
potential software processing bottlenecks).

Model results are presented both with numeric values and color coding that uses cool
colors to represent relatively low values and hot colors (yellow and red) calling
attention to relatively high values.  Up to 4 sets of results may be viewed together on
a screen.  This lets users view any combination of performance metrics for chosen
levels in the software model hierarchy, and even compare performance metrics for
design or implementation choices.  An export feature lets users copy model results
and paste them into word processing documents and presentation packages, or write
out results for charting packages to create custom charts for reports.

3.5  Application areas
SPE•ED  is intended to model software systems under development.  It may be any
type of software: operating systems, database management systems, or custom

2 SPE•ED  uses the CSIM modeling engine to solve the models [Schwetman, 1994].



applications.  The software may execute on any hardware/software platform
combination.  The software may execute on a uniprocessor or in a distributed or
client/server environment.

4.0  SPE Process Steps for OOD
The process for performing SPE for an object-oriented design begins with a set of
scenarios. A scenario is a description of the interactions between the system and its
environment or between the internal objects involved in a particular use of the system
under development.  The scenario shows the objects that participate and the messages
that flow between them.  A message may represent either an event or invocation of
one of the receiving object’s operations.

The use of scenarios has become popular in many current approaches to object-
oriented development.  Scenarios, known as “use cases,” are an important component
of Jacobson’s Objectory Method [Jacobson, et al., 1992].  Scenarios are also used in
OMT [Rumbaugh, et al., 1991], Booch [Booch, 1994], Fusion [Coleman, et al., 1994],
and the new Unified Modeling Language [Booch and Rumbaugh, 1995].  In object-
oriented methods, scenarios are used to:

• describe the externally visible behavior of the system,
• involve users in the requirements analysis process,
• support prototyping,
• help validate the requirements specification,
• understand interactions between objects, and
• support requirements-based testing.

Once the major functional scenarios have been identified, those that are important
from a performance perspective are selected for performance modeling.  Scenarios
that are important to performance can be identified by a variety of techniques,
including experience with similar systems and performance walkthroughs [Smith,
1990].

The scenarios are then translated to execution graphs (see below) which serve as input
to SPE•ED.  Currently, this translation is manual.  However, the close correspondence
between the way scenarios are expressed in object-oriented methods and execution
graphs suggests that an automated translation should be possible.

The next SPE steps are conducted after the translated model is entered into SPE•ED.
Performance engineers enter data for the processing steps in the execution graphs,
ensure that correct overhead specifications are in the SPE database, and evaluate
model solutions for alternatives.  These steps are illustrated with the following
example.



5.0  Example
To illustrate the use of SPE•ED for modeling and evaluating the performance of
object-oriented systems, we present an example based on a simple automated teller
machine (ATM).

The ATM accepts a bank card and requests a personal identification number (PIN) for
user authentication.  Customers can perform any of three transactions at the ATM:
deposit cash to an account, withdraw cash from an account, or request the available
balance in an account.  A customer may perform several transactions during a single
ATM session.  The ATM communicates with a computer at the host bank which
verifies the account and processes the transaction.  When the customer is finished
using the ATM, a receipt is printed for all transactions and the customer’s card is
returned.

Here, we focus on scenarios that describe the use of the ATM.  A full specification
would include additional models, such as a class diagram and behavior descriptions
for each class.  However, our interest here is primarily in the use of scenarios as a
bridge between Object-Oriented Development and Software Performance
Engineering.  Thus, these additional models are omitted.

5.1  Example Scenarios
As described in [Williams and Smith, 1995], scenarios represent a common point of
departure between object-oriented requirements or design models and SPE models.
Scenarios may be represented in a variety of ways [Williams, 1994].  Here, we use
Message Sequence Charts (MSCs) to describe scenarios in object-oriented models.
The MSC notation is specified in ITU standard Z.120 [ITU, 1996].  Several other
notations used to represent scenarios are based on MSCs (examples include:  Event
Flow Diagrams [Rumbaugh, et al., 1991]; Interaction Diagrams [Jacobson, et al.,
1992], [Booch, 1994]; and Message Trace Diagrams [Booch and Rumbaugh, 1995]).
However, none of these incorporates all of the features of MSCs needed to establish
the correspondence between object-oriented scenarios and SPE scenarios.

Figure 1 illustrates a high-level MSC for the ATM example.  Each object that
participates in the scenario is represented by a vertical line or axis.  The axis is
labeled with the object name (e.g., anATM).  The vertical axis represents relative time
which increases from top to bottom; an axis does not include an absolute time scale.
Interactions between objects (events or operation invocations) are represented by
horizontal arrows.

Figure 1 describes a general scenario for user interaction with the ATM.  The
rectangular areas labeled “loop” and “alt” are known as “inline expressions” and
denote repetition and alternation.  This Message Sequence Chart indicates that the
user may repeatedly select a transaction which may be a deposit, a withdrawal, or a
balance inquiry.  The rounded rectangles are “MSC references” which refer to other
MSCs. The use of MSC references allows horizontal expansion of Message Sequence



aUser anATM hostBank

loop

alt

cardInserted

requestPIN

pINEntered

requestTransaction

response

processDeposit

processWithdrawal

processBalanceInquiry

msc userInteraction

terminateSession

Figure 1.  Message Sequence Chart for User Interaction with the ATM

aUser hostBankanATM

requestAccount

account

requestAmount

amount

requestAuthorization

authorization

dispense(amount)

requestTakeCash

cashTaken

transactionComplete

ack

msc processWithdrawal

Figure 2.  Message Sequence Chart processWithdrawal



Charts. The MSC that corresponds to ProcessWithdrawal is shown in Figure 2.

A Message Sequence Chart may also be decomposed vertically, i.e., a refining MSC
may be attached to an instance axis.  Figure 3 shows a part of the decomposition of
the anATM instance axis.  The dashed arrows represent object instance creation or
destruction.

5.2  Mapping Scenarios to Performance Models
Models for evaluating the performance characteristics of the proposed ATM system
are based on performance scenarios for the major uses of the system.  These
performance scenarios are the same as the functional scenarios illustrated in the
message sequence charts (Figures 1 through 3).  However, they are represented using
Execution Graphs.  Note that not all functional scenarios are necessarily significant

anATM aCustomerSession aWithdrawal

cardInserted

new

requestPin

pINEntered

requestTransaction

requestTransaction

response

response

new

requestAccount

requestAccount

account

account

requestAmount

requestAmount

amount

amount

requestAuthorization

requestAuthorization

authorization

authorization

... ... ...

msc anATM

Figure 3.  Partial Decomposition of anATM



n

Get customer
ID from card

Get PIN from
customer

Terminate
Session

Process
Transaction

Get
Transaction

Process
Request

Process
Deposit

Process
Withdrawal

Process
BalanceInquiry

Process
Transaction =

Figure 4.  Execution graph from ATM Scenario

from a performance perspective.  Thus, an SPE study would only model those
scenarios that represent user tasks or events that are significant to the performance of
the system.

Figure 4 shows an Execution Graph illustrating the general ATM scenario.  The case
node indicates a choice of transactions while the repetition node indicates that a
session may consist of multiple transactions.  Subgraphs corresponding to the
expanded nodes show additional processing details.  The processing steps (basic
nodes) correspond to steps in the lowest-level Message Sequence Chart diagram for
the scenario. The execution graph in Figure 4 shows an end-to-end session that spans
several ATM customer interactions.  Thus analysts can evaluate the performance for
each individual customer interaction as well as the total time to complete a session. 3

5.3  Performance Evaluation with SPE•ED
After identifying the scenarios and their processing steps in the MSC, the analyst uses
SPE•ED to create and evaluate the execution graph model.  Figure 5 shows the SPE•ED
screen.  The “world view” of the model appears in the small navigation boxes on the
right side of the screen.  The correspondence between an expanded node and its
subgraph is shown through color.  For example, the top level of the model is in the
top-left navigation box; its nodes are black.  The top-right (turquoise) navigation box
contains the loop to get the transaction and process it.  Its corresponding expanded
node in the top-level model is also turquoise.  The ProcessWithdrawal subgraph is in

3 Some performance analysts prefer to evaluate a traditional “transaction” -- the processing
that occurs after a user presses the enter key until a response appears on the screen.  This
eliminates the highly variable, user-dependent time it takes to respond to each prompt.
While that approach was appropriate for mainframe transaction based applications, the
approach prescribed here is better for client/server and other distributed systems with
graphical user interfaces.  The screen design and user interaction patterns may introduce
end-to-end response time problems even though computer resource utilization is low.
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the large area of the screen (and in the second row, left navigation box).  Users can
directly access any level in the model by clicking on the corresponding navigation
box.

The next step is to specify software resource requirements for each processing step.
The software resources we examine for this example are:

• Screens - the number of screens displayed to the ATM customer (aUser)
• Home - the number of interactions with the hostBank
• Log - the number of log entries on anATM machine
• Delay - the relative delay for the ATM customer (aUser) to respond to a

prompt, or the time for other ATM device processing such as the cash
dispenser or receipt printer.

Up to five types of software resources may be specified.  The set of five may differ
for each subgraph if necessary to characterize performance.  The SPE•ED user
provides values for these requirements for each processing step in the model, as well
as the probability of each case alternative and the number of loop repetitions.  The
specifications may include parameters that can be varied between solutions, and may
contain arithmetic expressions.  Resource requirements for expanded nodes are in the
processing steps in the corresponding subgraph.

The software resource requirements for the ProcessWithdrawal subgraph are in Figure
5.  Note that the DispenseCash step displays a screen to inform the customer to take the
cash, logs the action to the ATM’s disk, and has a delay for the cash dispenser.  We
arbitrarily assume this delay to be 5 time units.  In the software model the delay is
relative to the other processing steps; e.g., the delay for the customer to remove the
cash is twice as long as DispenseCash.  The user may specify the duration of a time
unit (in the overhead matrix) to evaluate the effect on overall performance; e.g., a
range of .1 sec. to 2 sec. per time unit.  In this example a time unit is 1 sec.

The ATM scenario focuses on processing that occurs on the ATM.  However, the
performance of anATM unit is seldom a performance problem.  The SPE•ED
evaluation will examine the performance at a hostBank that supports many ATM units.

5.4  Processing Overhead
SPE•ED supports the SPE process defined in [Smith, 1990].  Analysts specify values
for the software resource requirements for processing steps.  The computer resource
requirements for each software resource request are specified in an overhead matrix
stored in the SPE database.  This matrix is used for all software models that execute
in that hardware/software environment.  Figure 6 shows the overhead matrix for this
case study.  The matrix connects the values specified in the “ATM Spec Template”
software specification template with the device usage in the “Host Bank” computer
facility.  The software resources in the template are in the left column of the matrix;
the devices in the facility are in the other columns.  The values in the matrix describe



Software spec template:

Facility template:

ATM Spec Template

Host Bank

Devices
Quantity

Service units

Screen
HomeBank

Log
Delay

Service time

CPU
1

K Instr.

1500

1e-05

ATM
200

Screens

1
0.1

0.01
1

1

Disk
1

Phys I/O

8

0.02

Figure 6.  Overhead Matrix

the device characteristics.

The pictures of the devices in the facility are across the top of the matrix, and the
device name is in the first row.  The second row specifies how many devices of each
type are in the facility.  For example, if the facility has 20 disk devices, there is one
disk device column with 20 in its quantity row.  SPE•EDs (deliberately) simple models
will assume that disk accesses can be evenly spread across these devices.  The third
row is a comment that describes the service units for the values specified for the
software processing steps.  The next five rows are the software resources in the
specification template.  This example uses only four of them.  The last row specifies
the service time for the devices in the computer facility.

The values in the center section of the matrix define the connection between software
resource requests and computer device usage.  The screen display occurs on anATM
unit; its only affect on the hostBank is a delay.  The 1 in the ATM column for the
‘Screen’ row means that each screen  specified in the software model causes one visit
to the ATM delay server.  We arbitrarily assume this delay to be one second (in the
service time row).  Similarly, each log and delay specification in the software model
result in a delay between hostBank processing requests.  We assume the log delay is



0.01 seconds.  The delays due to processing at the ATM unit could be calculated by
defining the overhead matrix for the ATM facility and solving the scenario to
calculate the time required.

This example assumes that all ATM transactions are for this hostBank; they do not
require remote connections.  This version of the model assumes 1500 K Instructions
execute on the host bank’s CPU (primarily for data base accesses), 8 physical I/Os are
required, and a delay of 0.1 seconds for the network transmission to the host bank.
These values may be measured, or estimates could be obtained by constructing and
evaluating more detailed models of the host processing required.

Thus each value specified for a processing step in the software model generates
demand for service from one or more devices in a facility.  The overhead matrix
defines the devices used and the amount of service needed from each device.  The
demand is the product of the software model value times the value in the overhead
matrix cell times the service time for the column.

5.5  Model Solutions and Results
The analyst first solves a ‘No Contention’ model to confirm that in the best case, a
single ATM session will complete in the desired time, without causing performance
bottlenecks at the host bank.  Up to four sets of results may be displayed concurrently,
as shown in Figure 7.

The elapsed time result for the ‘No Contention’ model is in the top-left quadrant.  The
overall time is at the top, and the time for each processing step is next to the step.
The color bar legend in the upper right corner of the quadrant shows the values
associated with each color; the upper bound is set by defining an overall performance
objective.  Values higher than the performance objective will be red, lower values are
respectively cooler colors.  The ‘Resource usage’ values below the color bar legend
show the time spent at each computer device.  Of the 35.6 total seconds for the end-
to-end scenario, 35.25 is due to the delays at the ATM unit for customer interactions
and processing.  Thus, no performance problems are apparent with this result.

The SPE tool evaluates the results of device contention delays by automatically
creating and solving an analytic queueing network model.  The utilization result for
the ‘Contention solution’ of the ATM sessions with an arrival rate of 5 withdrawal
transactions per second is in the top-right quadrant of Figure 7.  The total utilization
of each server is shown under the color bar, and the utilization of each device by each
processing step is next to the step.  The total CPU utilization is 15%, and the disk
device is 100%.  Even though the customer data base would fit on one disk device,
more are needed to relieve the contention delays.  In general, options for correcting
bottlenecks are to reduce the number of I/Os to the disk, reduce the number of ATM
units that share a host bank server, or add disks to the server.  The options are
evaluated by changing software processing steps, or values in the overhead matrix.
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The results in the lower quadrants of Figure 7 show the utilization and response time
results for 3 disk devices.  The quadrants let the analyst easily compare performance
metrics for alternatives.

5.6  System Execution Model
The ‘System model solution’ creates a queueing network model with all the scenarios
defined in a project executing on all their respective facilities.  The system execution
model picture is in Figure 8.  This example models one workload scenario: a session
with one withdrawal transaction.  The host bank may have other workloads such as
teller transactions, bank analyst inquiries, etc.  Each performance scenario in the SPE
database appears across the top of the system execution model screen.  The
specification template beside the scenario name displays the current workload
intensity and priority.  Below the scenario is a template that represents the devices in
the facility assigned to the scenario.  The facilities in the SPE database appear across
the bottom of the system execution model screen.  This example models only one
facility for the host bank.  It could also model the ATM unit, other home banks, etc.

The model is solved by calculating the model parameters from the software model for
each scenario and then constructing and evaluating a CSIM simulation model
[Schwetman, 1994].  CSIM is a simulation product that is widely used to evaluate
distributed and parallel processing systems.  By automatically creating the models,
SPE•ED eliminates the need to code CSIM models in the C programming language.
The model results show:

• the response time for the scenario and its corresponding color (inside the
scenario name rectangle),

• the amount of the total response time spent at each computer device (the
values and colors in the template below the scenario name)

• the average utilization of each device in each facility and its corresponding
color.

One of the model scenarios may be a focus scenario, usually a scenario that is vital to
the system development project.  Users may view various system model results for
processing steps in the focus scenario in 2 quadrants below the system model.

One of the difficult problems in simulation is determining the length of the simulation
run.  SPE•ED solves this problem with the performance results meter shown in Figure
9.  It is based on work by [Raatikainen, 1993] adapted for SPE evaluations.  The
approach is adapted because results depend on the precision of the model parameters,
and in early life cycle stages only rough estimates are available.  Users may monitor
simulation progress and stop the simulation to view results at any point.  They may
also set a confidence value or simulated run time to automatically terminate the
simulation.  The meter shows the progress of the current confidence;  it is calculated
with a batch-mean method.  SPE•ED uses a default value of 70% probability that the
reported response is within 30% of the actual mean.  This bound is much looser than
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typically used for computer system models. We selected this value empirically by
studying the length of time required for various models, versus the analytic
performance metrics, versus the precision of the specifications that determine the
model parameters.  Users may increase the confidence value, but not the probability.
It would be easy to add other controls, but experience with our users shows that this
approach is sufficient for their evaluations and requires little expert knowledge of
simulation controls.

6.0  Summary and Conclusions
This paper describes the SPE performance modeling tool, SPE•ED, and its use for
performance engineering of object-oriented software.  It describes how to use
scenarios to determine the processing steps to be modeled, and illustrates the process
with a simple ATM example defined with Message Sequence Charts.  It then
illustrates the SPE evaluation steps supported by SPE•ED.

Object-oriented methods will likely be the preferred design approach of the future.
SPE techniques are vital to ensure that these systems meet performance requirements.
SPE for OOD is especially difficult since functions may require collaboration among
many different objects from many classes.  These interactions may be obscured by
polymorphism and inheritance, making them difficult to trace.  Distributing objects
over a network compounds the problem.  Our approach of connecting performance
models and designs with message sequence charts makes SPE performance modeling



of object-oriented software practical.  The SPE•ED tool makes it easier for software
designers to conduct their own performance studies.  Features that de-skill the
performance modeling process and make this viable are:

• quick and easy creation of performance scenarios
• automatic generation of system execution models
• visual perception of results that call attention to potential performance

problems
• simulation length control that can be adapted to the precision of the model

input data.

Other features support SPE activities other than modeling such as SPE database
archives, and presentation and reporting of results.  Once performance engineers
complete the initial SPE analysis with the simple models and ensure that the design
approach is viable, they may export the models for use by “industrial strength”
performance modeling tools [Smith and Williams, 1995].

As noted in section 5, Message Sequence Charts do not explicitly capture time.
However, the close structural correspondence between scenarios expressed in
Message Sequence Charts and those using Execution Graphs suggests the possibility
of a straightforward translation from analysis/design models to performance
scenarios.  Standard SPE techniques, such as performance walkthroughs, best-and-
worst-case analysis, and others, can then be used to obtain resource requirements or
time estimates for processing steps.

Providing specifications for the overhead matrix still requires expert knowledge of the
hardware/software processing environments and performance measurement
techniques.  Some performance modeling tools provide libraries with default values
for the path lengths.  If the benchmark studies that led to the library values closely
match the new software being modeled, the default values are adequate.  Someone
must validate the default values with measurements to ensure that they apply to the
new software.  Thus the expert knowledge is necessary for both tool approaches.  It
would be relatively easy to build a feature to automatically populate SPE•EDs
overhead matrix from customized measurement tool output, but it is not currently a
high priority feature.

This paper demonstrates the feasibility of applying SPE to object-oriented systems.
Future research is aimed at providing a smooth transition between CASE tools for
OOD and SPE evaluation tools.
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