
Designing High-Performance Distributed Applications
Using Software Performance Engineering: A Tutorial

Connie U. Smith, Ph.D.

Performance Engineering Services,
PO Box 2640, Santa Fe, New Mexico, 87504-2640 USA

Telephone (505) 988-3811

December 1996

Appears in Proceedings Computer Measurement Group, San Diego, 1996.

Copyright © 1996, Performance Engineering Services

All rights reserved

This material may not be sold, reproduced or distributed without written permission from
Performance Engineering Services

2

Designing High-Performance Distributed Applications
Using Software Performance Engineering: A Tutorial

Connie U. Smith, Ph.D.
Performance Engineering Services

PO Box 2640
Santa Fe, NM 87504

www.perfeng.com/~cusmith
(505) 988-3811

This paper reviews the purpose of Software Performance Engineering (SPE) and the steps for
applying the SPE methods throughout the life cycle of new systems. It describes the data
required for SPE studies and illustrates a performance walkthrough for gathering the data. It
reviews the software and system execution models for assessing the performance of alternatives
and for capacity planning to support the new applications.

SPE Definition

Software performance engineering (SPE) is a method
for constructing software systems to meet performance
objectives. The process begins early in the software
life cycle and uses quantitative methods to identify
satisfactory designs, and to eliminate those that are
likely to have unacceptable performance, before
developers invest significant time in implementation.
SPE continues through the detailed design, coding, and
testing stages to predict and manage the performance
of the evolving software, and to monitor and report
actual performance against specifications and
predictions. SPE methods cover performance data
collection, quantitative analysis techniques, prediction
strategies, management of uncertainties, data
presentation and tracking, model verification and
validation, critical success factors, and performance
design principles.

Performance refers to the response time or throughput
as seen by the users. Responsiveness limits the
amount of work processed, so it determines a system’s
effectiveness and the productivity of its users. Many
users subconsciously base their perception of
computer service more on system responsiveness than
on functionality. Negative perceptions, based on poor
responsiveness of new systems, seldom change after
correction of performance problems.
The performance balance in Figure 1 depicts a system
that fails to meet performance objectives because
resource requirements exceed computer capacity.
With SPE, analysts detect these problems early in
development and use quantitative methods to support
cost-benefit analysis of hardware solutions versus

software requirements or design solutions, versus a
combination of the two. Developers implement
software solutions before problems are manifested in
code; organizations implement hardware solutions
before testing begins.

Is SPE necessary? Isn’t hardware fast enough and
cheap enough to resolve performance problems?
Surprisingly, the use of state-of-the-art hardware and
software technology dramatically increases the risk of
performance failures. This seems counter-intuitive —
one would expect increased performance — but the
newness of the products combined with the developers
inexperience with the new environment leads to
problems. This is particularly true for distributed
systems, such as client/server, because the myriad of

Workload

New Software

Computer

RESOURCE
REQUIREMENTS

CAPACITY

Configuration

Figure 1. Performance “balance”

3

inter-related performance factors and the complexity
of the design choices make intuitive performance
design decisions difficult if not impossible.

SPE techniques have been used successfully for more
than 15 years. This paper summarizes these
techniques for readers who would like to learn to apply
them. It gives an overview of SPE, reviews the steps
in the SPE process, defines the data needed to assess
performance in early life cycle stages, and describes
the models to predict performance. These SPE
techniques can be used with all types of systems;
however this paper specifically addresses distributed
systems because SPE techniques are particularly
beneficial for them. The paper does not provide
comprehensive coverage of the SPE related work. For
more information about related work see [SMIT94a].
For other papers that provide examples of SPE for
distributed systems see [HEID93; SMI94d; SWIN92].

SPE Process

SPE augments other software engineering
methodologies, it does not replace them. With SPE,

analysts apply quantitative methods throughout
development to confirm that performance is
satisfactory. SPE prescribes principles for creating
responsive software, specifications necessary for
evaluation, procedures for obtaining performance
specifications, and guidelines for the types of
evaluations to be conducted at each developmental
stage. It incorporates models for representing and
predicting software system performance, and a set of
analysis methods. The SPE process is depicted in
Figure 2; the steps are described in the following
paragraphs.

The first step defines the SPE assessments for the
current life cycle phase. Assessments determine
whether planned software meets its performance
objectives, such as acceptable response times,
throughput thresholds, or constraints on resource
requirements. A specific, quantitative objective is
vital for analysts to determine concretely whether or
not that objective can be met. It is essential to define
the performance objectives and the expected usage
patterns in order to determine the most appropriate
means of achieving them, and avoid devoting time to
unintentionally overachieving them.

We specify the performance objectives in terms of
responsiveness as seen by the system users. Both the
response time for an interactive task and the number of
work units processed in a time interval (throughput)
are measures of responsiveness. Responsiveness does
not necessarily imply efficient computer resource
usage. Efficiency is addressed only if critical
computer resource constraints must be satisfied.

After defining the goals, designers create the concept
for the life cycle product. For early phases the concept
is the functional architecture -- the software
requirements and the high-level plans for satisfying
them. In subsequent phases the concept is a more
detailed design, the algorithms and data structures, the
code, etc. Principles for creating responsive software
are covered in [SMIT88a; SMIT90a]

Once the life cycle concept is formulated, we gather
data sufficient for estimating its performance. First we
need the projected system workload: how it will
typically be used. Then we need an explanation of the
current design concept. Early in development, we use
the general system architecture; later we add the
proposed decomposition into object classes or
modules; still later, we incorporate the proposed
algorithms and data structures. We also need
estimates of the resource usage of the design entities.
The SPE Data section provides an overview of data
requirements and techniques for gathering
specifications.

Infeasible

Feasible

JOIN

FORK

Create concept for
lifecycle product

Verification &
Validation

Gather data

Construct & evaluate
appropriate model

Report results

Complete lifecycle
product

Enter next
phase

Until predicted
performance is
acceptable

Acceptable

performance
Alternatives
preferable?

Define SPE assessments
for lifecycle phase

Revise performance
goal

Modify lifecycle
concept

Figure 2. SPE Process

4

Because the precision of the model results depends on
the precision of the resource estimates, and because
these are difficult to estimate early in software
development, a best and worst-case analysis strategy is
integral to SPE. We use estimates of the lower and
upper bound when there is high uncertainty about
resource requirements. Using them, the analysis
produces an estimate of both the best and worst-case
performance. If the best-case performance is
unsatisfactory, we seek feasible alternatives. If the
worst-case performance is satisfactory, we proceed
with development. If the results are somewhere in
between, we identify critical components whose
resource estimates have the greatest effect, and focus
attention on obtaining more precise data for them. A
variety of techniques provide more precision, such as
further refining the design concept and constructing
more detailed models, or constructing performance
benchmarks and measuring resource requirements for
key elements.

To predict software performance, analysts construct a
model of the software execution that can be solved for
the indicative performance metrics. The models are
similar to those used for conventional performance
evaluation studies. In conventional studies of existing
systems, analysts model systems to predict the effect
of workload or configuration changes. The
conventional modeling procedure depicted in Figure

3a is as follows: study the computer system; construct
a model (either a queueing network or a simulation
model); measure current execution patterns;
characterize workloads; develop model input
parameters; validate the model by solving it and
comparing the model results to observed and measured
data for the computer system; and calibrate the model
until its results match the measurement data. Then we
use the conventional model to evaluate changes to the
computer system by modifying the corresponding
workload parameters, the computer system resource
parameters, or both. After each change, we compare
the model results to the performance goal. We repeat
the change-evaluate process until we identify the
desired performance solution. Practitioners rely on
these models for computer capacity planning. The
model precision is sufficient to predict future
configuration requirements. They are widely used,
and they work; so we use them as the basis for SPE.

The SPE performance models in Figure 3b are similar;
however, because the software does not yet exist, it is
not possible to measure the workload parameters. We
first model the workload explicitly.

Two models satisfy the modeling requirements: the
software execution model and the system execution
model. The software execution model represents key
facets of software execution behavior; its solution
yields workload parameters for the system execution
model, which closely resembles the conventional
models. An overview of the construction and
evaluation of the performance models follows in the
Model Overview section.

If the model results indicate that the performance is
likely to be satisfactory, developers proceed. If not,
analysts report quantitative results on the predicted
performance of the original design concept. If
alternative strategies would improve performance,
they report the alternatives and their expected
quantitative improvements. Developers review the
findings to determine the cost-effectiveness of the
alternatives. If a feasible and cost effective alternative
exists, developers modify the concept (architecture
design, or implementation decision) before the life
cycle product is complete. If none is feasible as, for
example, when the modifications would cause an
unacceptable delivery delay, we explicitly revise the
performance goal to reflect the expected degraded
performance.
A vital and on-going activity of the SPE process is to
verify that the models represent the software execution
behavior, and validate model predictions against
performance measurements. Compare the model
specifications for the workload, software structure,
execution structure, and resource requirements to

Workload
 1

Workload
 2

MODEL

Existing
 Work

New Work

MODEL

a. Conventional Models

b. Software Prediction
Models

Perf.
Metrics

Perf.
Metrics

Figure 3. SPE Model Overview

5

discrepancies to update the performance predictions,
and to identify the reasons for differences -- to prevent
similar problems occurring in the future. Similarly,
compare system execution model results (response
times, throughput, device utilization, etc.) to
measurements. Study discrepancies, identify error
sources, and calibrate the model as necessary. Begin
the model verification and validation early and
continue throughout the life cycle. In early stages,
focus on key performance factors; use prototypes or
benchmarks to obtain more precise specifications and
measurements as needed. The evolving software
becomes the source of the model verification and
validation (V&V) data.

This discussion outlined the steps for one design-
evaluation pass. We repeat the steps throughout the
life cycle. For each pass the goals and the evaluation
of the objectives change somewhat. The Life Cycle
SPE section discusses the life cycle stages and the
questions to be considered.

SPE Data

In order to create a software execution model you need
five types of data: performance goals, workload
definitions, software execution characteristics,
execution environment descriptions, and resource
usage estimates. An overview of each follows.

Precise quantitative performance goals are vital in
order to concretely determine whether or not
performance objectives can be met. For database
applications, both on-line performance goals and batch
window objectives must be met. For on-line
transactions, the goals specify the response time or
throughput required, and define the external factors
that impact goal attainment, such as the time of day,
the number of concurrent users, whether the goal is an
absolute maximum, a 90th percentile, etc. For
distributed applications, goals may specify the total
time to complete a user task including the time that
may be required to access a remote system.

Workload definitions specify the key scenarios of the
new software. For on-line transactions they initially
specify the transactions expected to be the most
frequently used. Later they also include resource
intensive transactions. Of all functions provided by
new systems, more than 80% of the users’ interactions
typically invoke less than 20% of the functions.
Consider your use of Automated Teller Machines
(ATM's). Of all possible transactions available to you,
more than 80% of your requests likely use only one or
two of them. On-line workload definitions identify the

key scenarios and specify their workload intensity: the
request arrival rates, or the number of concurrent users
and the time between their requests (think time).
Batch workload definitions identify the programs on
the critical path, their dependencies, and the data
volume to be processed.

Software execution characteristics identify
components of the software system to be executed for
each workload scenario. Of all possible software
components, less than 20% are likely executed more
than 80% of the time. The software execution
scenario identifies:

• components most likely to be invoked when
users request the corresponding workload
scenario;

• the number of times they are executed or their
probability of execution;

• and their execution characteristics, such as the
database tables used, and screens read or
written.

In distributed systems the workload scenarios may
require software execution on multiple platforms as
well as network transmission. The software execution
characteristics identify all such processing
requirements; then SPE analysis strategies focus on the
key software processing requirements for the initial
evaluations.

The execution environment descriptions define the
computer system configuration, such as the CPU, the
operating system, and the I/O subsystem
characteristics. It provides the underlying queueing
network model topology and defines resource
requirements for frequently used service routines.
This is usually the easiest information to obtain.
Performance measurement tools provide most of it,
and most capacity and performance analysts are
familiar with the requirements.

Resource usage estimates determine the amount of
service required of key devices in the computer system
configuration. For each software component executed
in the workload scenario you need:

• the approximate number of instructions
executed (or CPU time required),

• the number of physical I/Os,

• use of other key devices such as
communication lines (number of messages and
amount of data), memory (temporary storage,
map and program size), etc.

6

For database applications, the database management
system (DBMS) accounts for most of the resource
usage, so you need the number of database calls and
their characteristics. For distributed systems, you need
resource requirements on each platform and the
demand for communication services. Early life cycle
requirements are tentative, difficult to specify, and
likely to change, so you need upper and lower bound
estimates to identify problem areas or software
components that warrant further study to obtain more
precise specifications.

You may find that the number of times a component
executes or its resource usage varies significantly. To
represent the variability: identify the factor(s) which
cause the variability, use a data dependent variable to
represent the key factors, and specify the execution
frequency and resource usage in terms of the data
dependent variables. For example, in a database
environment the number of times some transaction
components execute may depend on the number of
rows qualified in a SELECT. Use a parameter, N, to
represent the number qualified. Then possible
execution frequencies may be N or 2N or .3N, etc.
Similarly, the number of instructions executed within a
component could be 500N. Later, study the
performance sensitivity to various parameter values.

It is seldom possible to get precise data for all these
specifications early in the software life cycle. Do not
wait to model the system until it is available (i.e., in
detailed design or later). Gather guesses,
approximations, and bounded estimates to begin then
augment the models as data becomes available. For
example, during the requirements analysis phase you
can identify some key database tables but may not
know their contents. You can get a very general
description of high use screens, but may not know all
the fields they will ultimately contain. Start with these
approximations – if performance is a problem at this
stage it must be corrected early, before more tables
and other processing is added. This approach has the
added advantage of focusing attention on key
workload elements to minimize their processing (as
prescribed by the centering principle in [SMIT88a;
SMIT90a]). Otherwise, designers tend to postpone
these important performance drivers in favor of
designing more complex but less frequent parts of the
software.

Data Gathering Example

SPE suggests techniques for gathering SPE data in a
performance walkthrough. This section illustrates the
process with a simple example. To illustrate what

transpires in a walkthrough, consider a database
example. The users of the system are represented by a
manager of customer service representatives (CSR
manager) who is knowledgeable of the future
transactions and the characteristics of the customer
inquiries handled by the service representatives. The
designers and implementors are the software
specialists who will develop the application programs.
They first discuss the SPE purpose: to determine
whether the transaction response time will enable the
customer service representatives to handle incoming
calls. Some discussion follows to quantify the current
and future response times, the peak hours, number of
customer service representatives, rate and nature of
incoming calls, etc.

The CSR manager then describes the system
requirements, questions typically posed by callers, and
specific transaction usage scenarios of the customer
service representatives. The performance engineer
asks questions such as how many customers are in the
database, which screens or transactions are typically
used for each, etc. Together they identify 4 high use
transactions and an initial response time goal of under
1 second. It is refined to specify the characteristics of
the peak hours, rate of calls, number of on-line
terminals, etc. when the one-second goal must be met.

Next, the designers and implementors describe the
database characteristics, and the software system.

Customer Service

Identify &
Locate
Acct-ID

Get Acct
Bill/Pay
Status

Account
Activity

Pending
Work

Screen
Communication

Routines
Common Modules

Work
Measurement

Utilities

Customer
Accounting

Account
Consistency

Routines

Audit Trail

Figure 4. Major Subsystems

7

Figure 4 gives an overview: Some of the primary
tables are in Table 1. The major subsystems and
support routines are in Figure 4. The “customer
service” box shows the 4 high use transactions which
comprise the initial workload scenarios. Next, the

designers identify the components to be executed (the
execution structure) for the specified scenarios. The
performance analyst interprets the information
presented and responds by describing a software
execution model of the derived execution structure.

Table 1. Primary Tables for DB Example

Table
Name

No. of Rows Bytes per
Row

Description

Acct-ID 1.5 Million 100 Cross reference account to
unique identifier

Debit 36 Million 40 All items billed for last 6 months

Credit 18 Million 40 All payments during last 6
months

Collection
History

150,000 60 Collection notices generated
during last 6 months

Activity 200,000 25 Transaction usage information

Identify &
locate
Acct-ID

Fetch
Debits

Fetch
Credits

Fetch
Collection

History

Post
Activity

Format &
Send

Use the key provided by the customer service rep to
locate matching rows in the Acct-ID Table (Details of this
transaction are omitted to limit the scope of this example.)

Use the unique identifier selected above to fetch all debits
for the last 6 months from the Debit Table

Use the unique identifier selected above to fetch all credits
for the last 6 months from the Credit Table

Use the unique identifier selected above to fetch all
collection notices sent during the last 3 months from the
Collection History Table

Log the transaction in the Work Measurement Activity
Table

Insert the data in the screen fields and send to screen

EXPLANATION

Scenario: Get account status
Workload: 2-5 transactions per second

Figure 5. Software Execution Structure

8

Figure 5 illustrates the processing steps in a user
scenario. This example shows the processing that
executes on a single system. In a distributed system,
you will have a similar scenario for the key processing
steps on each processor.

The execution environment is already known although
a system specialist may be consulted to resolve
configuration questions that arise during the
walkthrough. Therefore, after the execution structures
are derived, the walkthrough participants estimate the
resource usage specifications, taking into
consideration the CSR manager’s knowledge about the
workload, the software specialist’s knowledge of the
processing, and the performance analyst’s knowledge
of the environment. Figure 6 associates resource
estimates with each software component. CPU
estimates came from discussing the processing
required and relating it to existing transactions for
which measurement data is available. Lower bound
I/O estimates assume the top two index levels are
already in memory, and assume a clustering index
which places all needed data records on one page.
Upper bound estimates assume only the root index

node is in memory, and all data rows are on separate
pages.

Experienced performance engineers may suspect
performance problems, but they are not obvious to
other participants, so we defer discussing alternatives.
We repeat the process to develop scenarios for the
other high use transactions. The meeting concludes
with a summary of the findings, and schedules the
results presentation and next walkthrough.

Model Overview

We use graphs to represent the workload scenarios.
Nodes represent functional components of the
software, arcs represent control flow. The graphs are
hierarchical with the lowest level containing complete
information on estimated resource requirements.
Figure 6 is a simple software execution model. See
[SMIT90a] for a definition of software execution
models, how to represent processing steps with nodes
and how to evaluate models.

First, we use software execution models for a static
analysis to derive the mean, best- and worst-case

Identify &
locate

Acct-ID

Fetch
Debits

Fetch
Credits

Fetch
Collection

History

Post
Activity

Format &
Send

.05 - .3

DB Action
&Table

Scenario: Get account status
Workload: 2 - 5 transactions per second

 DBI/Os File I/Os

.05 - .1

.05 - .1

.05 - .1

.01 - .05

.001 - .01

SEL Acct-ID 2-24 3

SEL Coll-Hist 2-3 0

SEL Debit 3-15 2

SEL Credit 3-9 0

ADD Activity 0-1 0

0 3

CPU
(sec.)

Figure 6. Scenario Resource Requirements

9

response times. The static analysis makes the
optimistic assumption that there are no other jobs on
the host configuration competing for resources. We
compute the resource requirements for the lowest
hierarchical level of detail, then use the result for the
corresponding node at the next higher level of the
graph. We repeat the computation until, ultimately,
we have the totals for the entire graph. The specific
algorithms are in [SMIT90a]. For the simple scenario
in Figure 6, the totals are: CPU = .211-.660, DB I/Os
= 10-52, File I/Os = 8. If an I/O takes an average of
25 ms, the best case elapsed time for the scenario is:

.211 + (10 x .025) + (8x.025) = .661 sec.

Next, we use the resource requirements to specify
parameters for the system execution model to solve for
the following additional information:

• More precise metrics that account for resource
contention

• Sensitivity of performance metrics to
variations in workload composition

• Effect of new software on service level
objectives of other systems

• Identification of bottleneck resources

• Comparative data on performance

improvement options to the workload
demands, software changes, hardware
upgrades, and various combinations of each

To construct and evaluate the system execution model,
we first represent the key computer resources with a
network of queues. The queueing network model may
include queues to represent resources on multiple
processors and queues to represent communication
lines. Then we use environment specifications to
specify device parameters (such as CPU size and
processing speed). We derive the workload
parameters and service requests for new software from
the resource requirements computed from the software
execution models. Then we solve the model and
check for reasonable results. We examine the model
results. If the results show that the system fails to
meet performance objectives, we identify bottleneck
devices and correlate system execution model results
with software components. We identify and evaluate
alternatives to the software plans or the computer
configuration, and evaluate the alternatives by making
appropriate changes to the software or system model
and repeat the analysis steps.

The simple system execution model for the database
example is in Figure 7. This model represents the
software execution on a single platform in the
environment. It would be appropriate to model calls to
a stored procedure on a server. Subsequent models
add queues for additional platforms and key
communication devices. Subsequent models also add
workloads for existing work on this configuration –
model parameters are derived from measurements as
described in the SPE Process section. These results
show that the system meets the performance goal for
the lower bound on throughput, but fails for the upper
bound. Hardware solutions would use more disk
devices or faster devices. Software solutions would
revise the scenario to execute fewer database calls.
We quantify the alternatives by changing parameters
in the software execution models, the system
execution model, or both, and solving the models.
After selecting the appropriate alternative developers
proceed to the next life cycle phase.

Life Cycle SPE

The previous sections outline the SPE steps:

• define objectives,

• apply principles to formulate performance-
oriented concepts,

• gather data,

BEST CASE

Start CPU Disks

Finish

Load 5

Disks 100%

CPU 100%

Response time (sec) *****

Utilization

Load 2

Utilization

45%

42%

1.2

Figure 7. System Execution Model

10

• model and evaluate,

• measure to verify model fidelity, validate
model predictions, and confirm that software
meets performance objectives.

The steps are repeated throughout the life cycle. The
goals and the evaluation of the objectives change
somewhat for each pass.

Table 2 contains a synopsis of the SPE considerations
in each life cycle stage. The first evaluation occurs
during the requirements definition and the initial
formulation of the software design; it assesses the
feasibility and desirability of the functional
architecture to detect infeasible plans. The

requirements may be prescribed before development
begins and many developers perceive them to be non-
negotiable. It is nevertheless prudent to verify that the
requirements can be met with reasonable cost and
performance.

The next evaluation determines the computer
configuration required to support the new product, that
is, the power of the supporting hardware and operating
system software. These are not independent issues:
the design depends upon the requirements, and the
configuration will vary with the design. Therefore,
analysts evaluate several combinations of
requirements, designs, and configurations to determine
the best combination.

Table 2. Synopsis Of The Performance Engineering Considerations

Life Cycle Stage Performance Considerations

Requirements Analysis

Functional Architecture

What are typical uses?

How will the software be used?

What are the performance goals for these scenarios?

Can the requirements be achieved with acceptable
performance?

Approximately how much computer power is required to
support it?

Preliminary Design Does the expected performance of this design meet
specifications?

Is the proposed configuration adequate? Excessive?

Detailed Design Have changes occurred that affect earlier predictions?

What is a more realistic estimate of the projected
performance?

Implementation and
Integration testing

How does the performance of the implementation
alternatives compare?

Have any unforeseen problems arisen?

What are the resource requirements of the critical
components?

Are the performance requirements met?

Maintenance & Operation What is the effect of the proposed modifications?

What are the long-range configuration requirements to
support future use?

1

After establishing a feasible set of requirements, the
functional architecture of the software, and the
supporting configuration requirements, the focus of
SPE changes. Analysts identify components that are
critical with respect to meeting performance goals, and
implement them first. This identification of critical
components maximizes the impact of the performance
efforts, and yields early measurement data of actual
resource requirements to produce more precise
predictions.

In the middle stages of the life cycle, SPE incorporates
additional design details as they evolve, and design
changes as they occur. Continued analysis helps to
detect problems as soon as possible. At this stage,
SPE studies provide data for developers to select
appropriate data structures, algorithms, and system
decomposition strategies. Models incorporate
operating system overhead for memory management,
data management, resource management and
communication. As implementation proceeds, analysts
add implementation details, refine the resource
requirements estimates, and use more detailed models
to produce more precise predictions.
During the maintenance stage, SPE evaluates both
major and minor revisions which correct defects or
add functions. Minor changes use mid-life cycle
techniques to incorporate changes into the models and
assess their performance impact. Major revisions use
early life cycle techniques to assess the feasibility and
desirability of the revised requirements and functional
architecture, and follow the major-revision project
with standard SPE steps. Maintenance evaluations
require much less effort than original studies when the
SPE models are current and complete and can be used
as the basis for the analysis.

System performance engineering techniques evaluate
the overall end-to-end performance to ensure that
performance objectives will be met when all
subsystems are combined. Systems with complex
combinations of software, networks, and hardware
have many potential pitfalls in addition to application
software choices.

Summary

This paper reviewed the purpose of SPE, the steps for
applying the SPE methods throughout the life cycle of

new systems, the data requirements and illustrated a
performance walkthrough approach for gathering the
data. The software and system execution models for
assessing the performance of alternatives were
described and their use throughout the life cycle was
reviewed.

SPE is becoming increasingly popular for large,
strategic systems to systematically manage the
performance. The models are relatively easy to
construct and evaluate with the performance modeling
tools available today. SPE’s current problems are not
the technical problems of constructing and evaluating
the performance models. The chief barriers are
making developers and managers aware of SPE’s
potential, and persuading them to incorporate the
methods into their development life cycle.

References

[HEID93] Ruth V. Heidel and George W. Dodson,
(Editor), Special Issue on Client/Server Computing ,
CMG Transactions, no. 82, 1993.

[SMIT88a] Connie U. Smith, "Applying Synthesis
Principles to Create Responsive Software Systems,"
IEEE Transactions on Software Engineering , vol. 14,
no. 10, 1988, pp. 1394-1408.

[SMIT90a] Connie U. Smith, Performance
Engineering of Software Systems, Reading, MA,
Addison-Wesley, 1990.

[SMIT94a] Connie U. Smith, "Performance
Engineering," in The Encyclopedia of Software
Engineering, John Wiley and Sons, 1994.

[SMI94d] Connie U. Smith and Bernie Wong, "SPE
Evaluation of a Client/Server Application," Proc.
Computer Measurement Group, Orlando, FL, 1994.

[SWIN92] Carol Swink, "SPE in a Client/Server
Environment: A Case Study," Proceedings Computer
Measurement Group Conference, Reno, 1992, pp.
271-284.

