
1

Chapter 16

SOFTWARE PERFORMANCE ENGINEERING

Connie U. Smith1 and Lloyd G. Williams2
1Performance Engineering Services, PO Box 2640, Santa Fe, NM 87504, www.perfeng.com
2Software Engineering Research, 264 Ridgeview Lane, Boulder, CO 80302, (303) 938-9847

Abstract: Performance is critical to the success of today’s software systems. However,
many software products fail to meet their performance objectives when they
are initially constructed. Fixing these problems is costly and causes schedule
delays, cost overruns, lost productivity, damaged customer relations, missed
market windows, lost revenues, and a host of other difficulties. This chapter
presents software performance engineering (SPE), a systematic, quantitative
approach to constructing software systems that meet performanced objectives.
SPE begins early in the software development process to model the per-
formance of the proposed architecture and high-level design. The models help
to identify potential performance problems when they can be fixed quickly and
economically.

Key words: performance, software performance engineering, architecture

1. INTRODUCTION

While the functionality delivered by a software application is obviously
important, it is not the only concern. Over its lifetime, the cost of a software
product is determined more by how well it achieves its objectives for quality
attributes such as performance, reliability/availability or maintainability than
by its functionality.

This chapter focuses on developing software systems that meet
performance objectives. Performance is the degree to which a software
system or component meets its objectives for timeliness. Thus, performance
is any characteristic of a software product that you could, in principle,
measure by sitting at the computer with a stopwatch in your hand.

2 Chapter 16

There are two important dimensions to software performance:
responsiveness and scalability. Responsiveness is the ability of a system to
meet its objectives for response time or throughput. In real-time systems,
responsiveness is a measure of how fast the system responds to an event, or
the number of events that can be processed in a given time. Scalability is the
ability of a system to continue to meet its response time or throughput
objectives as the demand for the software functions increases. Scalability is
an increasingly important aspect of today’s software systems.

Performance is critical to the success of today’s software systems.
However, many software products fail to meet their performance objectives
when they are initially constructed. Fixing these problems is costly and
causes schedule delays, cost overruns, lost productivity, damaged customer
relations, missed market windows, lost revenues, and a host of other
difficulties. In extreme cases, it may not be possible to fix performance
problems without extensive redesign and re-implementation. In those cases,
the project either becomes an infinite sink for time and money, or it is,
mercifully, canceled.

Performance cannot be retrofitted; it must be designed into software from
the beginning. The “make it run, make it run right, make it run fast”
approach is dangerous. Recent interest in software architectures has
underscored the importance of architecture in achieving software quality
objectives, including performance. While decisions made at every phase of
the development process are important, architectural decisions have the
greatest impact on quality attributes such as modifiability, reusability,
reliability, and performance. As Clements and Northrup note [Clements and
Northrup 1996]:

“Whether or not a system will be able to exhibit its desired (or required) quality
attributes is largely determined by the time the architecture is chosen.”

Our experience is that performance problems are most often due to
inappropriate architectural choices rather than inefficient coding. By the time
the architecture is fixed, it may be too late to achieve adequate performance
by tuning. While a good architecture cannot guarantee attainment of
performance objectives, a poor architecture can prevent their achievement.

This chapter presents an overview of software performance engineering
(SPE), a systematic, quantitative approach to constructing software systems
that meet performanced objectives. SPE prescribes principles for creating
responsive software, the data required for evaluation, procedures for
obtaining performance specifications, and guidelines for the types of
evaluation to be conducted at each development stage. It incorporates
models for representing and predicting performance as well as a set of
analysis methods [Smith 1990]. Use of the UML for deriving SPE models is
discussed in [Smith and Williams 2002].

16. Software Performance Engineering 3

Because of the importance of architecture in determining performance,
SPE takes an architectural perspective. The principles and techniques of
SPE form the basis for PASASM, a method for performance assessment of
software architectures [Williams and Smith 2002]. PASA was developed
from experience in conducting performance assessments of multiple
software architectures in several application domains including web-based
systems, financial applications, and real-time systems. It uses the principles
and techniques described in this chapter to determine whether an architecture
is capable of supporting its performance objectives. When a problem is
found, PASA also identifies strategies for reducing or eliminating those
risks.

The PASA process consists of ten steps [Williams and Smith 2002]. They
are based on the SPE modeling process described below. The method may
be applied to new development to uncover potential problems when they are
easier and less expensive to fix. It may also be used when upgrading legacy
systems to decide whether to continue to commit resources to the current
architecture or migrate to a new one. And it may be used on existing systems
with poor performance that require speedy correction.

The next section describes the SPE model-based approach. The SPE
modeling process is then illustrated with a case study.

2. OVERVIEW OF SOFTWARE PERFORMANCE
ENGINEERING

SPE is a model-based approach that uses deliberately simple models of
software processing with the goal of using the simplest possible model that
identifies problems with the system architecture, design, or implementation
plans. These models are easily constructed and solved to provide feedback
on whether the proposed software is likely to meet performance goals. As
the software process proceeds, the models are refined to more closely
represent the performance of the emerging software.

The precision of the model results depends on the quality of the estimates
of resource requirements. Because these are difficult to estimate for software
architectures, SPE uses adaptive strategies, such as upper- and lower-bounds
estimates and best- and worst-case analysis to manage uncertainty. For
example, when there is high uncertainty about resource requirements,
analysts use estimates of the upper and lower bounds of these quantities.
Using these estimates, analysts produce predictions of the best-case and

SM PASA and Performance Assessment of Software Architectures Method are service marks

of Software Engineering Research and Performance Engineering Services.

4 Chapter 16

worst-case performance. If the predicted best-case performance is
unsatisfactory, they seek feasible alternatives. If the worst-case prediction is
satisfactory, they proceed to the next step of the development process. If the
results are somewhere in between, analyses identify critical components
whose resource estimates have the greatest effect and focus on obtaining
more precise data for them. A variety of techniques can provide more
precision, including: further refining the architecture and constructing more
detailed models or constructing performance prototypes and measuring
resource requirements for key components.

Two types of models provide information for architecture assessment:
the software execution model and the system execution model. The software
execution model is derived from UML models of the software It represents
key aspects of the software execution behavior. It is constructed using
execution graphs [Smith and Williams 2002] to represent workload
scenarios. Nodes represent functional components of the software; arcs
represent control flow. The graphs are hierarchical with the lowest level
containing complete information on estimated resource requirements.

Solving the software execution model provides a static analysis of the
mean, best- and worst-case response times. It characterizes the resource
requirements of the proposed software alone, in the absence of other
workloads, multiple users or delays due to contention for resources. If the
predicted performance in the absence of these additional performance-
determining factors is unsatisfactory, then there is no need to construct more
sophisticated models. Software execution models are generally sufficient to
identify performance problems due to poor architectural decisions.

If the software execution model indicates that there are no problems,
analysts proceed to construct and solve the system execution model. This
model is a dynamic model that characterizes the software performance in the
presence of factors, such as other workloads or multiple users, which could
cause contention for resources. The results obtained by solving the software
execution model provide input parameters for the system execution model.
Solving the system execution model provides the following additional
information:
– refinement and clarification of the performance requirements
– more precise metrics that account for resource contention
– sensitivity of performance metrics to variations in workload composition
– identification of bottleneck resources
– comparative data on options for improving performance via: workload

changes, software changes, hardware upgrades, and various combinations
of each

– scalability of the architecture and design: the effect of future growth on
performance

16. Software Performance Engineering 5

– identification of critical parts of the design
– assistance in designing performance tests
– effect of new software on service level objectives of other systems

The system execution model represents the key computer resources as a
network of queues. Queues represent components of the environment that
provide some processing service, such as processors or network elements.
Environment specifications provide device parameters (such as CPU size
and processing speed). Workload parameters and service requests for the
proposed software come from the resource requirements computed by
solving the software execution model. The results of solving the system
execution model identify potential bottleneck devices and correlate system
execution model results with software components.

If the model results indicate that the performance is likely to be
satisfactory, developers proceed. If not, the model results provide a
quantitative basis for reviewing the proposed architecture and evaluating
alternatives. Feasible alternatives can be evaluated based on their cost-
effectiveness. If no feasible, cost-effective alternative exists, performance
goals may need to be revised to reflect this reality.

3. THE SPE MODELING PROCESS

The SPE modeling process focuses on the system’s use cases and the

scenarios that describe them. In a use-case-driven process such as the
Unified Process ([Kruchten 1999], [Jacobson, et al. 1999]), use cases are
defined as part of requirements definition (or earlier) and are refined
throughout the design process. From a development perspective, use cases
and their scenarios provide a means of understanding and documenting the
system’s requirements, architecture, and design. From a performance
perspective, use cases allow you to identify the workloads that are
significant from a performance point of view, that is, the collections of
requests made by the users of the system. The scenarios allow you to derive
the processing steps involved in each workload.

The SPE process includes the following steps. The activity diagram in
Figure 16-1 captures the overall process.
1. Assess performance risk: Assessing the performance risk at the outset of

the project tells you how much effort to put into SPE activities. If the
project is similar to others that you have built before, is not critical to your
mission or economic survival, and has minimal computer and network
usage, then the SPE effort can be minimal. If not, then a more significant
SPE effort is needed.

6 Chapter 16

identify
critical

use cases

select key
performance

scenarios

establish
performance

objectives

assess
performance

risk

construct
performance

model(s)

add software
resource

requirements

add computer
resource

requirements

evaluate
performance

model(s)
modify
product
concept

revise
performance

objectives

verify and
validate
models

[performance
acceptable]

[feasible]

[infeasible]

modify/
create

scenarios

Figure 16-1. The SPE Modeling Process

16. Software Performance Engineering 7

2. Identify critical use cases: The critical use cases are those that are

important to the operation of the system, or that are important to
responsiveness as seen by the user. The selection of critical use cases is
also risk driven. You look for use cases where there is a risk that, if
performance goals are not met, the system will fail or be less than
successful.

Typically, the critical use cases are only a subset of the use cases that
are identified during object-oriented analysis. In the UML, use cases are
represented by use case diagrams

3. Select key performance scenarios: It is unlikely that all of the scenarios
for each critical use case will be important from a performance per-
spective. For each critical use case, the key performance scenarios are
those that are executed frequently, or those that are critical to the
perceived performance of the system. Each performance scenario
corresponds to a workload. We represent scenarios by using sequence
diagrams augmented with some useful extensions.

4. Establish performance objectives: You should identify and define per-
formance objectives and workload intensities for each scenario selected
in step 2. Performance objectives specify the quantitative criteria for
evaluating the performance characteristics of the system under
development. These objectives may be expressed in three primary ways
by response time, throughput, or constraints on resource usage. For
information systems, response time is typically described from a user
perspective, that is, the number of seconds required to respond to a user
request. For real-time systems, response time is the amount of time
required to respond to a given external event. Throughput requirements
are specified as the number of transactions or events to be processed per
unit of time.

Workload intensities specify the level of usage for the scenario. They
are specified as an arrival rate (e.g., number of sensor readings per
second) or number of concurrent users.
Repeat steps 5 through 8 until there are no outstanding performance

problems.
5. Construct performance models: We use execution graphs to represent

software processing steps in the performance model. The sequence-
diagram representations of the key performance scenarios are translated to
execution graphs.

6. Determine software resource requirements: The processing steps in an
execution graph are typically described in terms of the software resources
that they use. Software resource requirements capture computational
needs that are meaningful from a software perspective. For example, we

8 Chapter 16

might specify the number of messages sent or the number of database
accesses required in a processing step.

You base estimates of the amount of processing required for each step
in the execution graph on the operation specifications for each object
involved. This information is part of the class definition in the class
diagram. When done early in the development process, these may be
simple best- and worst-case estimates. Later, as each class is elaborated,
the estimates become more precise.

7. Add computer resource requirements: Computer resource requirements
map the software resource requirements from step 6 onto the amount of
service they require from key devices in the execution environment.
Computer resource requirements depend on the environment in which the
software executes. Information about the environment is obtained from
the UML deployment diagram and other documentation. An example of a
computer resource requirement would be the number of CPU instructions
and disk I/Os required for a database access.
Steps 6 and 7 could be combined, and the amount of service required

from key devices estimated directly from the operation specifications for the
steps in the scenario. However, this is more difficult than estimating
software resources in software-oriented terms and then mapping them onto
the execution environment. In addition, this separation makes it easier to
explore different execution environments in “what if” studies.
8. Evaluate the models: Solving the execution graph characterizes the

resource requirements of the proposed software alone. If this solution
indicates that there are no problems, you can proceed to solve the system
execution model. This characterizes the software’s performance in the
presence of factors that could cause contention for resources, such as
other workloads or multiple users.

If the model solution indicates that there are problems, there are two
alternatives:
– Modify the product concept: Modifying the product concept involves

looking for feasible, cost-effective alternatives for satisfying this use
case instance. If one is found, we modify the scenario(s) or create new
ones and solve the model again to evaluate the effect of the changes on
performance.

– Revise performance objectives: If no feasible, cost-effective alterna-
tive exists, and then we modify the performance goals to reflect this
new reality.
It may seem unfair to revise the performance objectives if you can’t

meet them (if you can’t hit the target, redefine the target). It is not wrong
if you do it at the outset of the project. Then all of the stakeholders in the
system can decide if the new goals are acceptable. On the other hand, if

16. Software Performance Engineering 9

you get to the end of the project, find that you didn’t meet your goals, and
then revise the objectives— that’s wrong.

9. Verify and validate the models: Model verification and validation are
ongoing activities that proceed in parallel with the construction and
evaluation of the models. Model verification is aimed at determining
whether the model predictions are an accurate reflection of the software’s
performance. It answers the question, “Are we building the model right?”
For example, are the resource requirements that we have estimated
reasonable?

Model validation is concerned with determining whether the model
accurately reflects the execution characteristics of the software. It answers
the question [Boehm 1984], “Are we building the right model?” We want
to ensure that the model faithfully represents the evolving system. Any
model will only contain what we think to include. Therefore, it is
particularly important to detect any model omissions as soon as possible.

Both verification and validation require measurement. In cases where
performance is critical, it may be necessary to identify critical
components, implement or prototype them early in the development
process, and measure their performance characteristics. The model
solutions help identify which components are critical.
These steps describe the SPE process for one phase of the development

cycle, and the steps repeat throughout the development process. At each
phase, you refine the performance models based on your increased
knowledge of details in the design. You may also revise analysis objectives
to reflect the concerns that exist for that phase.

4. CASE STUDY

To illustrate the process of modeling and evaluating the performance of a
real-time system, we will use an example based on a telephony switch. This
is not a hard real-time system, but it does have some important performance
objectives that are driven primarily by economic considerations: a telephony
system should be able to handle as many calls per hour as possible.

The case study is based on information in [Schwartz 1988] and our own
experience. It is not intended to be representative of any existing system.
Some aspects of the call processing have been simplified so that we may
focus on the basic performance issues and modeling techniques.

10 Chapter 16

4.1 Overview

When a subscriber places a call, the local switch (the one that is con-
nected to the caller’s telephone) must perform a number of actions to set up
and connect the call, and, when the call is completed, it must be cleared. For
simplicity, we’ll focus on the simplest type of call, often referred to as POTS
(plain, ordinary telephone service). Figure 16-2 schematically illustrates the
connection between the calling and called telephones. Note that switches A
and B may be connected directly, or they may be connected by a route
through the public switched telephone network (PSTN). It is also possible
that the calling and called telephones are connected to the same local switch.

The following sections illustrate the application of the SPE process to
this case study.

4.1.1 Assess Performance Risk (Step 1)

Performance is very important, however, the construction of telephony
software is well understood. This project will be the first time that this
development organization has used object-oriented technology. Thus,
because this technology is unfamiliar, we rate the performance risk as high.
As a result, the SPE effort will be substantial, perhaps as much as 10% of the
overall project budget.

4.1.2 Identify Critical Use Cases (Step 2)

Since we’re limiting ourselves to POTS calls, the only use cases are
PlaceACall and ReceiveACall. In placing or receiving a call, the local switch
interacts directly with only one other switch in the PSTN. There may,
however, be several intermediary switches involved between the caller and
the receiver of the call.

Calling
Subscriber Switch BSwitch A

Called
Subscriber

PSTN

Figure 16-2. Telephony Network

16. Software Performance Engineering 11

4.1.3 Select Key Performance Scenarios (Step 3)

Figure 16-3 shows the sequence of events required to complete a call for
a customer. For simplicity, we show only two switches in the PSTN. The
rectangle labeled loop is an iterator and the rounded rectangle is a reference
to another sequence diagram. These extensions to the UML sequence
diagram notation are taken from the MSC standard [ITU 1996]. For more
details on these extensions, see [Smith and Williams 2002].

The sequence of events is as follows:
1. The caller picks up the telephone handset, generating an offHook event to

the switch. The switch responds by applying a dial tone to the telephone.
2. The caller then dials a number of digits. The number of digits dialed may

depend on the type of call (local versus long distance).

PlaceACall

ReceiveACall

Telephony Switch

Figure 16-3. POTS Use Case Diagram

calling
Subscriber switchA switchB

called
Subscriber

offHook

dialTone

digit

connect
ring

alerting
ringback

answer
answer

answer

callInProgress

onHook
release

release

onHook
clear

clear

loop *[until done]

Figure 16-3. Call Sequence Diagram

12 Chapter 16

3. The switch analyzes the dialed digits, determines which outgoing trunk to

use, and transmits a connect message to the next switch. This message
“seizes” or reserves the connection until the call is completed.

4. The destination switch applies a ring signal to the called telephone, and
sends an alerting message back to the originating switch which, in turn,
applies a ringback tone to the calling telephone.

5. When the called subscriber answers, the destination switch sends an
answer message to the calling switch, which completes the connection to
the caller’s telephone. The call then proceeds until one of the parties
hangs up.

6. When one of the parties hangs up, an onHook message is transmitted to
his/her local switch. That switch then sends a release message to the
other switch.

7. When the other party hangs up, a clear message is returned.
Our task is to provide the software that manages the processing of a call

for an individual switch.1

4.1.4 Establish Performance Objectives (Step 4)

We’ll assume that a performance walkthrough has determined that a
module should be able to set up three originating calls per second, and
handle their setup within 0.5 second.

4.1.5 Construct Performance Models (Step 5)

To construct the performance models, we need to know the details of the
processing that is performed during the execution of the scenario in Figure
16-3. We begin with an overview of the architecture and design of the
switch.

A telephony switch serves a number of lines for subscriber telephones
and trunks, over which calls can be made to, or arrive from, other switches.
To make it possible to easily field switches of different capacities, or
upgrade an existing switch to handle more lines, it has been decided that the
switch will be composed of a number of module processors. Each module
processor serves a fixed number of lines or trunks. To increase the capacity
of a particular switch, we simply add more module processors, up to the
maximum capacity of the switch.

1 The sequence diagram in Figure 16-3 shows one scenario from the PlaceACall use case.

There are several other scenarios belonging to this use case. For example, some calls
receive a busy signal, some are unanswered, sometimes the caller hangs up before the call
can be answered, and so on. For this example, we focus on the scenario described by
Figure 16-3. Later, we’ll discuss how to include these other possibilities.

16. Software Performance Engineering 13

When a subscriber places a call, it is handled by the module processor
that is connected to the user’s telephone (the calling module processor). The
calling module processor sets up the call and determines a path through the
switch to a module processor (the called module processor) connected to the
required outgoing line or trunk. The outgoing line may be attached to the
called party’s telephone, or it may be connected via an outgoing trunk to
another switch in the PSTN.

Each module also has a line/trunk interface. This interface provides
analog-to-digital and digital-to-analog conversion for analog telephone lines,
as well as capabilities for communication with other switches via trunks. The
line/trunk interface also provides a path for communication with other
modules within the same switch.

With this architecture, each call is handled by two module processors
within each switch: a calling module processor and a called module pro-
cessor. Each module needs objects to manage its view of the call.

To accommodate the two views of a call, we use two active classes: an
OriginatingCall and a TerminatingCall, as shown in Figure16-4.2 For each
call, there is an instance of OriginatingCall in the calling module processor,
and an instance of TerminatingCall in the called module processor. Each
instance of OriginatingCall and TerminatingCall has a DigitAnalyzer object to
analyze the dialed digits, and a (shared) Path object to establish and maintain
the connection. These are passive objects that execute on the thread of

control belonging to their respective call objects
When a subscriber goes “off hook,” an OriginatingCall object is created to

handle the call. The OriginatingCall object, in turn, creates instances of

2 The active classes are indicated using the usual stereotype of a thick-bordered

rectangle.

1

1

1

1

1

1

Digit
Analyzer

Originating
Call

Terminating
CallPath

Figure 16-4. Class Diagram

14 Chapter 16

DigitAnalyzer and Path as needed. (The Path object maintains the physical
connection through the switch— it does not need to interact with other
objects.) The refined sequence diagram for call origination is shown in
Figure 16-5. There is a similar refined sequence diagram for call termination
which is not shown here.

The software model for call origination is straightforward; there is no
looping or branching. The only issue in constructing this model is how to
handle the time between when the call is connected and when one of the
parties hangs up. We could estimate an average call duration, and include it
as a delay corresponding to the callInProgress step in the sequence diagram.
This is awkward, however, and the long delay will hide more interesting
aspects of the model solution.

It is much simpler to divide this scenario into two parts: one for initiating
the call, and one for ending the call. Thus, we create a separate performance
scenario for originating a call and for a hang-up. The hang-up scenario
would have the same intensity (arrival rate) as call origination, because
every call that is begun must also be ended.

lineInterface
callingModule

Processor
offHook

«create»
anOCall

dialTone
«create» aDigit

Analyzer

digit

aRoute

«destroy»

aPath
«create»

calledModule
Processor

connect

alerting
ringback

answer
answer

callInProgress

onHook
release

clear

clear
«destroy»

«destroy»

done

loop *[until done]

Figure 16-5. Call Origination

16. Software Performance Engineering 15

We actually have four performance scenarios for each module processor:
call origination (for calls that originate in that module); call termination (for
calls that terminate in that module), calling-party hang-up (for when the
calling party hangs up first), and called-party hang-up (for when the called
party hangs up first).

Figure 16-6 shows the execution graph for call origination. Most of the
nodes in this execution graph are expanded nodes that aggregate several
steps in the sequence diagram of Figure16-5. This graph shows the major
steps in call origination.

Figure 16-7 shows the execution graph corresponding to the calling party
ending the call.

4.1.6 Determine Software Resource Requirements (Step 6)

The types of software resources will differ depending on the type of
application and the operating environment. The types of software resources
that are important for the telephony switch are:
– CPU— the number CPU instructions (in thousands) executed for each

step in the scenario

connect

analyze
Digits

setupPath

setupComplete

answer

Figure 16-6. Call
Origination Execution Graph

release

clear

Figure 16-7. Calling-Party
Hang-Up Execution Graph

16 Chapter 16

– Line I/F— the number of visits to the line interface for each step in the

scenario
We specify requirements for each of these resources for each processing

step in the execution graph. Figure 16-8 and Figure 16-9 show the expansion
of the first two nodes in the call origination execution graph of Figure 16-6.
The figures also show the resource requirements for each node. Again, these
resource requirements are reasonable for this type of system, but are not
representative of any particular telephony switch. Details for other nodes are
omitted to save space.

offHook

createCall

1,300CPU
1Line I/F

2,000CPU
0Line I/F

Figure 16-8. Expansion of connect node

createDigit
Analyzer

analyzeDigits

selectRoute

1,000CPU
0Line I/F

800CPU
0Line I/F

600CPU
0Line I/F

Figure 16-9. Expansion of analyzeDigits node

4.1.7 Add Computer Resource Requirements (Step 7)

We must also specify the computer resource requirements for each
software resource request. The values specified for computer resource
requirements connect the values for software resource requirements to
device usage in the target environment. The computer resource requirements
also specify characteristics of the operating environment, such as the types
of processors/devices, how many of each, their speed, and so on.

16. Software Performance Engineering 17

Table 16-1 is known as an overhead matrix; it contains the computer
resource requirements for the telephony switch. There are two devices of
interest: the CPU and the line interface. CPU requirements are specified in
units of K instructions.

Table 16-1. Overhead Matrix
Devices CPU Line I/F
Quantity 1 1
Service Units K Instr. Visits

CPU 1
Line I/F 100 1

Service Time .000015 .005

Several processing steps require sending or receiving one or more mes-

sages via the line interface. We could explicitly model the sending or
receiving of each message. However, that level of detail complicates the
model and adds nothing to our understanding of the software’s performance.
Instead, we include the line interface as overhead, and specify the number of
visits to the line interface to send or receive a message for each processing
step. Each visit to the line interface requires 100K CPU instructions and a 5
ms. delay to enqueue or dequeue a message and perform the associated
processing.

4.1.8 Evaluate the Models (Step 8)

The arrival rate for the call origination scenario is 3 calls per second. For
each originating call in one module, there must be a corresponding ter-
minating call in some other module. Thus, on average, each module must
also handle three termination calls per second.

To derive intensities for the hang-up scenarios, we’ll assume that the
probability of the calling party hanging up first is the same as the probability
of the called party hanging up first. Then, the arrival rates for these scenarios
are the same and, to keep a steady-state rate of calls, they must each also be
3 calls per second. Table 16-2 summarizes the workload intensities for the
four scenarios.

Table 16-2. Workload Intensities
Scenario Intensity

Call Origination 3 calls/sec
Call Termination 3 calls/sec
Calling Party Hang-Up 3 calls/sec
Called Party Hang-Up 3 calls/sec

18 Chapter 16

For this example, we focus on the call origination scenario. We’ll follow
the simple-model strategy and begin with the software execution model. This
will tell us whether we can meet the goal of 3 calls per second in the best
case— with no contention between scenarios. Figure 16-10 shows the
solution for the software execution model (no contention) for this scenario.
The overall response time is 0.2205 second. The time required to set up the
call is 0.1955 second (0.2205 - 0.0250).3

Time, no contention: 0.2205

0.0560

0.0360

0.0903

0.0132

0.0250

connect

analyze
Digits

setupPath

setupComplete

answer

Figure 16-10. Software Execution Model Solution

The response time indicated by the software model is well within our
goal of 0.5 second, so we proceed to solve the system model to determine
the effects of contention for this one scenario. The system model solution
indicates a residence time of 0.3739 second for call setup. This is still within
our required time limit. Table 16-3 shows the residence time, time for call
setup, and CPU utilization for each of the four scenarios.

3 The time to set up a call does not correspond directly to the end-to-end time for the

execution graph of Figure16-6. Call setup does not include the processing that occurs after
the called party has answered (the last node in the graph). Thus, the time to set up the call
is taken to be the time from when the user goes “off hook” until the setupComplete step
is done (the first four nodes in Figure 16-6).

16. Software Performance Engineering 19

Table 16-3. Contention Results for Individual Scenarios with Object Creation

Scenario Residence Time Setup Time CPU
Utilization

Call Origination 0.4156 sec 0.3739 sec 0.53
Call Termination 0.2326 sec 0.2143 sec 0.38
Hang-Up (Called
Party) 0.0492 sec 0.12

Hang-Up (Caller) 0.0661 sec 0.14

We now proceed to the next level of complexity in our modeling, con-

structing and solving the system execution model for all four scenarios. The
solution to this model will show the effects of contention among the four
scenarios for system resources. The solution indicates a residence time of
16.31 seconds for call setup. This is clearly well over our design goal of 0.5
second.

The reason for this high number can be found by examining the CPU
utilization. With all four scenarios executing on the same processor, the CPU
utilization is 1.00— the CPU is saturated. In fact, if you add the utilizations
for the individual scenarios in Table 16-3, you find that they total more than
1.00!

The formula for residence time at a device is:

RT = S/(1 – U)

Where S is the service time and U is the utilization.
As the CPU utilization gets closer to 1, the residence time goes to infin-

ity. Our result of more than 16 seconds is an indication that the denominator
in this formula is approaching zero.

To meet our design goal, we must reduce the CPU utilization. While no
single scenario exceeds the limits, the combined demand on the CPU is
enough to put us over the limit.

If we pre-allocate a block of call objects instead of creating them dynam-
ically, we can save this unnecessary overhead. This is an example of
“recycling” objects— one of the recommended refactorings of the Excessive
Dynamic Allocation antipattern [Smith and Williams 2002]. Each call object
is used over and over again, rather than creating a new one for each offHook
event.

When this change is made, the software model result for call origination
becomes 0.1280 second (call setup only), and the contention solution for this
scenario is 0.1726 second. Table 16-4 shows the residence time, time for call
setup, and CPU utilization for each of the four scenarios without dynamic
object creation.

20 Chapter 16

Table 16-4. Contention Results for Individual Scenarios without Object Creation

Scenario Residence Time Setup Time CPU
Utilization

Call Origination 0.2048 sec 0.1726 sec 0.32
Call Termination 0.1243 sec 0.1087 sec 0.22
Hangup (Called
Party) 0.0224 sec 0.05

Hangup (Caller) 0.0376 sec 0.08

Solving the system execution model with all four revised scenarios shows

a residence time for call origination of 0.3143 second, with an overall CPU
utilization of 0.68, which is within our performance objective.

We have been following the simple-model strategy [Smith and Williams
2002]; at each step building the simplest possible model that will uncover
any problems. We have modeled call processing assuming that all calls are
actually completed. As we noted earlier, this is not the actual case. In fact,
some calls receive a busy signal, some are unanswered, sometimes the caller
hangs-up before the call can be answered, and so on. At this point, we might
go back and include these other possibilities. We could then construct
scenarios for these additional possibilities, and use either probabilities or
arrival rates to reflect the percent of time that they occur.

We’ll leave the construction and solution of these additional models as an
exercise for the reader.4

4.1.9 Verify and Validate the Models (Step 9)

We need to confirm that the performance scenarios that we selected to
model are critical to performance, and confirm the correctness of the
workload intensity specifications, the software resource specifications, the
computer resource specifications, and all other values that are input into the
model. We also need to make sure that there are no large processing
requirements that are omitted from the model. To do this, we will conduct
measurement experiments on the operating environment, prototypes, and
analogous or legacy systems early in the modeling process. We will measure
evolving code as soon as viable. SPE suggests using early models to identify
components critical to performance, and implementing them first. Measuring
them and updating the model estimates with measured values increases
precision in key areas early.

4 Motivated readers will find this example in [Smith and Williams 2002]
 C. U. Smith and L. G. Williams, Performance Solutions: A Practical Guide to Creating

Responsive, Scalable Software, Boston, MA, Addison-Wesley, 2002.. It is possible to
obtain the models from www.perfeng.com for further study using the methods explained
in the book.

16. Software Performance Engineering 21

5. SUMMARY

Architectural decisions are among the earliest made in a software
development project. They are also among the most costly to fix if, when the
software is completed, the architecture is found to be inappropriate for
meeting performance objectives. Thus, it is important to be able to assess the
impact of architectural decisions on performance at the time that they are
made. The SPE process focuses on the system’s use cases and the scenarios
that describe them. This focus allows you to identify the workloads that are
most significant to the software’s performance, and to focus your efforts
where they will do the most good.

SPE begins early in the software development process to model the per-
formance of the proposed architecture and high-level design. The models
help to identify potential performance problems when they can be fixed
quickly and economically.

Performance modeling begins with the software execution model. You
identify the use cases that are critical from a performance perspective, select
the key scenarios for these use cases, and establish performance objectives
for each scenario. To construct the software execution model, you translate
the sequence diagram representing a key scenario to an execution graph.
This establishes the processing flow for the model. Then, you add software
and computer resource requirements and solve the model.

If the software execution model solution indicates that there are no
performance problems, you can proceed to construct and solve the system
model to see if adding the effects of contention reveals any problems. If the
software execution model indicates that there are problems, you should deal
with these before going any further. If there are feasible, cost-effective
alternatives, you can model these to see if they meet the performance goals.
If there are no feasible, cost-effective alternatives, you will need to modify
your performance objectives, or perhaps reconsider the viability of the
project.

To be effective, the SPE steps described in this chapter should be an
integral part of the way in which you approach software development. SPE
can easily be incorporated into your software process by defining the
milestones and deliverables that are appropriate to your organization, the
project, and the level of SPE effort required.

The quantitative techniques described in this chapter form the core of the
SPE process. SPE is more than models and measurements, however. Other
aspects of SPE focus on creating software that has good performance
characteristics, as well as on identifying and correcting problems when they
arise. They include [Smith and Williams 2002]:

22 Chapter 16

– Applying performance principles to create architectures and designs with

the appropriate performance characteristics for your application
– Applying performance patterns to solve common problems
– Identifying performance antipatterns (common performance problems)

and refactoring them to improve performance
– Using late life cycle techniques to ensure that the implementation meets

performance objectives
By applying these techniques, you will be able to cost-effectively build

performance into your software and avoid performance failures.
The SPE principles and techniques also form the basis for PASASM, a

method for the performance assessment of software architectures. This
method may be applied to new development to uncover potential problems
when they are easier and less expensive to fix. It may also be used when
upgrading legacy systems to decide whether to continue to commit resources
to the current architecture or migrate to a new one. And it may be used on
existing systems with poor performance that requires speedy correction. The
topics not included here are explained in [Smith and Williams 2002]

16. Software Performance Engineering 23

6. REFERENCES

[Boehm 1984] B. W. Boehm, "Verifying and Validating Software Requirements and Design
Specifications," IEEE Software, vol. 1, no. 1, pp. 75-88, 1984.

[Clements and Northrup 1996] P. C. Clements and L. M. Northrup, "Software Architecture:

An Executive Overview," Technical Report No. CMU/SEI-96-TR-003, Carnegie Mellon
University, Pittsburgh, PA, February, 1996.

[ITU 1996] ITU, "Criteria for the Use and Applicability of Formal Description Techniques,

Message Sequence Chart (MSC)," International Telecommunication Union, 1996.

[Jacobson, et al. 1999] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software

Development Process, Reading, MA, Addison-Wesley, 1999.

[Kruchten 1999] P. Kruchten, The Rational Unified Process: An Introduction, Reading, MA,

Addison-Wesley, 1999.

[Schwartz 1988] M. Schwartz, Telecommunications Networks: Protocols, Modeling and

Analysis, Reading, MA, Addison-Wesley, 1988.

[Smith 1990] C. U. Smith, Performance Engineering of Software Systems, Reading, MA,

Addison-Wesley, 1990.

[Smith and Williams 2002] C. U. Smith and L. G. Williams, Performance Solutions: A

Practical Guide to Creating Responsive, Scalable Software, Boston, MA, Addison-
Wesley, 2002.

[Williams and Smith 2002] L. G. Williams and C. U. Smith, "PASASM: A Method for the

Performance Assessment of Software Architectures," Proceedings of the Third
International Workshop on Software and Performance (WOSP2002), Rome, Italy, July,
2002, pp. 179-189.

