PASASM: A Method for the
Performance Assessment of Software Architectures

Lloyd G. Williams Connie U. Smith
Software Engineering Research Performance Engineering Services
264 Ridgeview Lane PO Box 2640
Boulder, Colorado 80302 Santa Fe, New Mexico, 87504-2640
(303) 938-9847 (505) 988-3811
boulderlgw@aol.com http://www.perfeng.com/
Abstract Recent interest in software architectures has under-

Architectural decisi th liest made i scored the importance of architecture in determining
renitectural decisions are among the earliest made I &,y 4re quality. While decisions made at every phase

soft;/lvarte c:_th_afloprrr:enttErOJec]Et.WThey. are alslo tth(;a rtr;]oséf the development process are important, architectural
costly to fix i, when the software 1S compieted, e yqqigions have the greatest impact on quality attributes

architecture is found to be inappropriate for meetingy ., o5 modifiability, reusability, reliability, and perfor-

quality objectives. Thus, it is important to be able ©mance. As Clements and Northrop note [Clements and
assess the impact of architectural decisions on qua“t?(lorthrup 1996];

objectives such as performance and reliability at the

time that they are made. “Whether or not a system will be able to exhibit its desired
(or required) quality attributes is largely determined by the
This paper describes PASA, a method for performance time the architecture is chosen.”

assessment of software architectures. It was develop hil d hitect ; ¢ tai ‘
from our experience in conducting performance assess- e a good architecture cannot guarantee attainmen
of quality goals, a poor architecture can prevent their

ments of software architectures in a variety of applica hi "
tion domains including web-based systems, financiafcMevement.

applications, and real-time systems. PASA uses the prinrchitectural decisions are among the earliest made in a
ciples and techniques of software performance engineegpftware development project. They are also the most
ing (SPE) to determine whether an architecture igostly to fix if, when the software is completed, the
capable of supporting its performance objectives. Theychitecture is found to be inappropriate for meeting
method may be applied to new development to uncovejyality objectives. Thus, it is important to be able to
potential problems when they are easier and less expefssess the impact of architectural decisions on quality

sive to fix. It may also be used when upgrading legacypjectives such as performance and reliability at the
systems to decide whether to continue to commitime that they are made.

resources to the current architecture or migrate to a new
one. The method is illustrated with an example drawrPerformance, both responsiveness and scalability, is

from an actual assessment. critical to the success of today’s software systems. Many
software products fail to meet their performance objec-
1. Introduction tives when they are initially constructed. Fixing these

. problems is costly and causes schedule delays, cost
While the functionality delivered by a software applica- o\erryns, lost productivity, damaged customer relations,
tion is obviously important, it is not the only concem. yissed market windows, lost revenues, and a host of
Over its lifetime, the cost of a software product is deteryer gifficulties. In extreme cases, it may not be possi-
mined more by how well it achieves its objectives fory e (4 fix performance problems without extensive rede-
quality attributes such as performance, reI|ab|Ilty/avan-sign and re-implementation. In those cases, the project
ability or maintainability than by its functionality. either becomes an infinite sink for time and money, or it

is, mercifully, canceled.

SM PASA and Performance Assessment of Software Architecperformance cannot be retrofitted: it must be designed
tures Method are service marks of Performance Solutionsinto software from the beginning. The “make it run
LLP. ’ ’

make it run right, make it run fast” approach is danger-

-1-

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

ous. Our experience is that performance problems ammance, reliability). PASA also uses architectural styles
most often due to inappropriate architectural choice$or analysis with a focus on general characteristics of
rather than inefficient coding. By the time the architecthe architecture together with design guidelines [Will-
ture is fixed, it may be too late to achieve adequate pefams and Smith in preparation].

formance by tuning.
Y g ATAM and PASA differ in their approach to perfor-

This paper describes PASA, a method for performancenance modeling. ATAM uses analytical models of cer-
assessment of software architectures. It was developédin architectural features while PASA uses more
from our experience in conducting performance assesgeneral software execution and system execution mod-
ments of software architectures in a variety of applicaels that may be solved analytically or via simulation
tion domains including web-based systems, financia]Smith and Williams 2002]. ATAM is also concerned
applications, and real-time systems. PASA uses the prirwith interactions between quality attributes and focuses
ciples and techniques of software performance engineeon architectural features where tradeoffs may be
ing (SPE) to determine whether an architecture isequired. PASAs primary focus is on performance.
capable of supporting its performance objectives [SmittHowever, other quality attributes and tradeoffs between
and Williams 2002]. The method may be applied to newthem are considered as well, as discussed below.

development to uncover potential problems when they) o))
are easier and less expensive to fix. It may also be usgﬂ'"'ams and Smith [Williams and Smith 1998] discuss

when upgrading legacy systems to decide whether tmg performance evaluation of softwgre a_rchitecture;.
continue to commit resources to the current architectur&niS Paper extends that work with the inclusion of archi-
or migrate to a new one. tectural styles and performance antipatterns as analysis

tools. It also formalizes the architecture assessment pro-
2 Related Work cess based on the general software performance engi-
neering process described in [Smith and Williams
Kazman and co-workers describe two related2002].
approaches to the evaluation of software architectures.
The Software Architecture Analysis Method (SAAM) Grahn and Bosch [Grahn and Bosch 1998] report some
[Kazman, et al. 1996] uses scenarios to derive informaRreliminary results on characterizing three architectural
tion about an architecture’s ability to meet certain qualStyles: pipe-and-filter, layered, and blackboard. They
ity objectives such as performance, reliability, orused a simulation technique to determine the effects of
modifiability. The Architecture Tradeoff Analysis Vvarying the number of components in each style. Their
Method (ATAM) [Kazman, et al. 1998] extends SAAM work focused on general performance characteristics of
to consider interactions among quality objectives andach st)_/le rather than techniques for assessing individ-
identify architectural features that are sensitive to moré@l architectures.
than one quality attribute. Once these sensitivities hav
been identified, tradeoffs between quality objectives ca
be evaluated.

Balsamo and co-workers [Balsamo, et al. 1998] discuss
n approach to performance evaluation of software
architectures based on use of the Chemical Abstract

Both SAAM and ATAM have similarities to this work. Machine (CHAM) formalism. Their method automati-
Like PASA, SAAM and ATAM are scenario-based. cally derives a Queueing Network Model (QNM) from a
Analysis of software architectures is based on the use §fHAM description of the architectureTheir work and
scenarios to provide insight into how the architecture®ther similar approaches such as [Cortellesa and Miran-
satisfies quality objectives. In SAAM and ATAM, sce- dola 2000] and [Pooley and King 1999] focus on con-
narios are informal narratives of uses of the software. IM€cting design notations to performance models.

PASA, performance scenarios are expressed formally,

described below. E@ther, earlier publications such as [Smith and Williams

1998] and [Smith and Williams 1997] focus on the mod-

SAAM and ATAM consider a variety of software qual- eling of a system once it is unde_rstood. Much of the per-
ity attributes in their analysis including reliability, modi- formance assessment work is based on the SPE
fiability, and performance. ATAM makes use of technigues for modeling and analyzing software perfor-
Attribute-Based Architectural Styles (ABASs) as anmance early in the life cycle [Smith and Williams 2002],

assessment tool. An ABAS [Klein and Kazman 1999][Smith 1990]. In contrast this work focuses specifically

extends the concept of an architectural style by adding @" the assessment of a software architecture, and
framework for reasoning about architectural decisiongddresses the method for gathering information, inter-

with respect to a particular quality attribute (e.g., perfor-

-2-

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

acting with clients, and applying SPE principles and
techniques to arrive at the results of the assessment.

3. The PASA Method 7

PASA is a method for the performance assessment of

software architectures. It uses the principles and tech-
niques of SPE [Williams and Smith 1998], [Smith and
Williams 2002] to identify potential areas of risk within
the architecture with respect to performance and other
quality objectives. If a problem is found, PASA also

identifies strategies for reducing or eliminating those9

architecture and the specific features that support the
key performance scenarios. Problem areas are
explored in more depth.

Architectural Analysis-The architecture is analyzed
to determine whether it will support the performance
objectives.

8. Identification of Alternatives-If a problem is found,

alternatives for meeting performance objectives are
identified.

. Presentation of ResultsResults and recommenda-

risks. tions are presented to managers and developers.

Our approach is scenario-based. Scenarios for importalclui1e following sections describe each of these steps in
workloads are identified and documented. These scenafs o o detail

ios then provide a means of reasoning about the perfor-

mance of the software as well as other qualities. Theyh some cases, it is possible to conduct a complete
also serve as a starting point for constructing perforassessment in one intensive week. In most others, how-
mance models of the architecture if more detailed studever, it is likely that the initial assessment will identify
ies are needed. potential problems that require performance measure-

ments and modeling before their impact can be quanti-

The PASA process consists of.the nine steps SUMMy. When measurements and modeling are needed, the
rized below. The steps are typically performed in the

) rocess typically spans several, less-intensive weeks as
order given. In some cases, however, the order may

. ata is gathered and evaluated.
varied for some reason, such as to take advantage of the

availability of someone with expertise in a particulars 1 process Overview

area. For example, someone with expertise about a pag- jg important that everyone involved understand the
ticular component may only be available on a particulagyrpose of the architecture assessment, the process that
day. Also, discovery of new information in one stepwj| be used, the architecture and processing informa-
often requires revisiting a previous one, so iteration igjon that is required, and the potential outcomes. Thus,
common. the assessment begins with a presentation that describes:

1. Process OverviewThe assessment process begins
with a presentation designed to familiarize both

managers and developers with the reasons for an .
architectural assessment, the assessment process, required, and results produced
and the outcomes. * the steps in the PASA process

« the architecture information needed to perform the

« the rationale for performing an architecture assess-
ment
overview of SPE goals, model-based approach, data

2. Architecture Overview-In this step, the develop-
ment team presents the current or planned architec- assessment .
ture. « tradeoffs between performance and other quality
attributes
3. Identification of Critical Use Cases-The externally . .
visible behaviors of the software that are important There is also an opportunity for managers and develop-
to responsiveness or scalability are identified. ers to ask questions and express their concerns.
4. Selection of Key Performance Scenarid@or each ~ 3-2 Architecture Overview
critical use case, the scenarios that are important to ' Ne goal of this step is for the assessment team to gain a
performance are identified. high-level understanding of the architecture before delv-
ing into its details. It starts with a presentation of the
5. Identification of Performance Objectives’recise, current or planned architecture by one or more members
guantitative, measurable performance objectives aref the development team.
identified for each key scenario.
Typically, the assessment team has already reviewed the
6. Architecture clarification and discussieAPartici- available architecture documentation. Thus, this session

pants conduct a more detailed discussion of the typically begins with a brief walkthrough of the archi-

-3-

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

tecture. This is followed by a question-and-answer seswork. Maintainers will want to know that this can be
sion that focuses on missing details and validating thaccomplished in a reasonable amount of time.

assessors’ understanding of the architecture.
3.4 Selection of Key Performance Scenarios

This step may involve a significant discovery phase. IrEach use case consists of a set of scenarios that describe
many cases, the architecture is simply undocumenteghe sequence of actions required to execute the use case.
With legacy systems, even if there is architecture docuNot all of the scenarios belonging to a critical use case
mentation, it is likely that there were changes made dufwijl| be important from a performance perspective, how-
ing implementation that are not reflected in theever. For example, variants are likely to be executed

documentation or that the system has evolved so that thgfrequently and, thus, will not contribute significantly
documentation is no longer an accurate reflection of thgy overall performance

current state.
For each critical use case, we focus on the scenarios that

We have also found that most architecture documentagre executed frequently and on those that are critical to
tion is informal. Much of what we receive as architec-the yser’s perception of performance. For some systems,
ture documentation consists of box-and-line diagrams may also be necessary to include scenarios that are not
that illustrate the infrastructure or “technical arChiteC-executed frequenﬂy, but whose performance is critical
ture.” These diagrams may indicate that the system usgghen they are executed. For example, crash recovery or
WebSphere and NTServer but they do little to reveal thﬂ]aintenance upgrades may not occur frequenﬂy, but it

nature of the components that make up the system or thgay be important that they are done quickly.
relationships between them. There is also little informa-

tion on the dynamic aspects of performing commorin many cases, particularly with legacy systems, use
functions. cases and scenarios are not documented. In those cases,

the assessment team must work with the development
To overcome these problems, it is often necessary t@am to identify the important uses of the software and
deduce the architecture from developer interviewsdetail the processing steps that are executed for the key
code, and other artifacts. We have found that elicitind;sage scenarios. The process used for eliciting this
scenarios for the important uses of the system is a goggformation is similar to that used for performance

way to extract this information. Thus, this step and theyalkthroughs, as discussed in [Smith and Williams
next two are often iterated. In many cases, the informaz002].

tion provided by precisely characterizing the key sce- _ .
narios is a major revelation for the development teamsScenarios are documented using augmented UML
Often, this is one of the most valuable deliverables ofequence diagrams [Booch, et al. 1999], [Smith and

the assessment. Williams 2002]. In an object-oriented system, a
sequence diagram describes the objects (individual
3.3 Identification of Critical Use Cases objects, components, or subsystems) that cooperate to

Use cases describe externally visible behaviors of thperform a function and the sequence of interactions

software. Critical use cases are those that are importabhetween them. For non-object-oriented systems (as most
to the operation of the system, or that are important tof the architectures that we encounter in fact are), a
responsiveness as seen by the user. Critical use casesjuence diagram documents the major software units
may also include those for which there is a significanthat perform a function and their interactions. The use of

performance risk, i.e., those for which there is a risksequence diagrams provides two advantages:

that, if performance objectives are not met, the system
will fail or be less than successful. Typically, the critical

use cases are only a subset of the total number of uses of
the system.

» The sequence diagram notation facilitates valida-
tion of the processing steps in the scenarios and
makes derivation of performance models straight-
forward.

Use cases are most often described from an end-userr When the software architecture is unclear, con-
point of view. For example, with an automated teller structing sequence diagrams helps the assessment
machine (ATM) we might investigate customer use team understand the components and their interac-
cases that describe deposits, withdrawals, etc. For archi- tions. They also help the assessment team validate
tecture assessments, however, it is important to also their understanding of the architecture, and often
consider other stakeholders. For example, a mainte- inform maintainers of legacy systems of the actual
nance upgrade may require downloading large amounts behavior of their system.

of code to client machines over a local or wide-area net-

-4 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

3.5 Identification of Performance Obijectives overall system organization, recurring solutions to com-
As Kazman and co-workers note [Kazman, et al. 1996]:mon problems in structuring software systems.

“Software architectures are neither intrinsically good nor . . .
R _ Y9 If the architecture is representative of one of the com-
intrinsically bad; they can only be evaluated with respect to

the needs and goals of the organizations that use them.” mon architectural styles, we can use the general perfor-
mance characteristics of the style to reason about the

In order for the assessment to be meaningful, thosgerformance of that instance. For example, in a layered
needs and goals must be clearly defined. Each key scgrchitecture there is a great deal of overhead as requests
nario should have at least one associated performangge passed from layer to layer. Thus, this style would not

objective. Typically, these will be end-to-end require-pe appropriate for situations where high throughput is
ments. In some cases, however, it may be desirable tesired.

break an end-to-end performance objective into sub-

objectives that are assigned as performance budgets dhe overall architectural style is appropriate but there
each part of the processing are deviations from the archetype in some details, these

deviations are explored to determine if they have a neg-

Performance objectives may be expressed in several diftive impact on performance. This is discussed in more
ferent ways, including response time, throughput, ogetail below.

constraints on resource usage. In each case, the objec-

tive should be quantitative and measurable. Vague stat8-7-2 ldentification of performance antipatterns

ments such as “the system shall be as fast as possibléntipatterns [Brown, et al. 1998] are conceptually simi-
are not useful. There is no way that you can ever be sufar to patterns [Gamma, et al. 1995] in that they docu-
that you have met an objective like this. An objectivement recurring solutions to common design problems.
such as “the end-to-end time to process a typical usgrhey are known asntipatterns because their use (or

request should be less than 2 seconds” is much morgisuse) produces negative consequences. Antipatterns
useful. document common mistakes made during software

development. They also document solutions for these

It is also important to specify the conditions undermistakes. Thus, antipatterns tell you what to avoid and
which the required performance is to be achieved fopow to fix a problem when you find it.

each combination of scenario and objective. The condi-

tions include the workload mix and intensity. Performance antipatterns document common perfor-
mance problems and how to fix them [Smith and Will-
3.6 Architecture Discussions iams 2000], [Smith and Williams 2002]. They capture

Because the architecture descriptions provided seldoithe knowledge and experience of performance experts
provide the information required for the assessment, wby providing a conceptual framework that helps analysts
usually schedule meetings with architects and designets identify performance problems and suggesting ways
of key portions of the system, once we have identifiedf solving them.

them, to learn more about component interactions. .)
When appropriate, we also meet with staff who werdintipatterns are refactored (restructured or reorganized)

involved in previous tuning efforts and those who may!© Overcome their negative consequenceeefactoring
have performance measurement data to learn as much/3& COrectness-preserving transformation that improves

we can about problem areas and current performan&@e quality of the software. For example, the interaction

metrics such as response time, utilizations, and resour@gtWeen two components might be refactored to
requirements of the system. improve performance by sending fewer messages with
more data per message. This transformation does not

3.7 Architecture Analysis alter the semantics of the application, but it may

Several techniques are brought to bear in analyzing tHéprove overall performance. Refactoring may also be

performance of a software architecture. They include: used to enhance other quality attributes including reus-
ability, modifiability, or reliability.

3.7.1 Identification of the underlying architectural

style(s) 3.7.3 Performance modeling and analysis

Software architectural styles or patterns ([Shaw andPortions of the architecture may require more quantita-

Garlan 1996], [Buschmann, et al. 1996], [Schmidt, et altive analysis. Initially, a simple analysis of performance

2000]) describe the structural organization of a family ofoounds is sufficient to identify problem areas. For

systems that share common architectural feature§xample, if your performance objective is to process

Architectural styles are similar to design patterns100 transactions per second then each transaction must

[Gamma, et al. 1995] in that they capture, at the level oféke less than 0.01 seconds to complete. Other perfor-
-5.

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

mance bounds are covered in [Luthi, et al. 1997]tention for resources. When these questions arise, it is
[Majumdar, et al. 1991], [Hsieh and Lam 1987], necessary to use a system execution model.

[Stephens and Dowdy 1984], [Dowdy, et al. 1984],) _ .
[Eager and Sevcik 1983]. The system execution model is a dynamic model that

characterizes software performance in the presence of
If the analysis of performance bounds indicates the neef@dctors, such as multiple users or other workloads, that
for more detailed modeling, this is done in a secondould cause contention for resources. The results
phase of the assessment process. The use of modelstained by solving the software execution model pro-
makes it possible to quantitatively assess the detailedde input parameters for the system execution model.
performance of the software. The models also allowSolving the system execution model provides the fol-
analysts to quickly and easily explore architectural altertowing additional information:

natives if problems are discovered.))
* more precise metrics that account for resource con-

The models used are deliberately simple so that feed- tention

back on the performance characteristics of the architec- » sensitivity of performance metrics to variations in

ture can be obtained quickly and inexpensively. The workload composition

goal is to use the simplest possible model that identifies « effect of new software on service level objectives of

problems with the proposed architecture. These models other systems

can also be carried over into the development phase ande identification of bottleneck resources

elaborated to more closely represent the performance ofe comparative data on options for improving perfor-

the emerging software. mance via: workload changes, software changes,
hardware upgrades, and various combinations of

The precision of the model results depends on the qual- o5ch

ity of the estimates of resource requirements. Because

these are difficult to estimate for software architecturesDetails of the creation and evaluation of system execu-
SPE uses adaptive strategies, such as upper- and low&pn models are also in [Smith and Williams 2002].
bounds estimates and best- and worst-case analysis to

manage uncertainty. For example, when there is higR-8 Identification of Alternatives

uncertainty about resource requirements, analysts udkperformance problems are found, it is often possible
estimates of the upper and lower bounds of these quantP identify alternatives that may make it possible to meet
ties. Using these estimates, analysts produce predictioférformance objectives.

of the best-case and worst-case performance. If the prey ¢ sections illustrate ways in which archi-
dicted best-case performance is unsatisfactory, they se§k 9 Y

feasible alternatives. If the worst case prediction is satis ctural alternatives may be identified.

factory, they proceed to the next step of the developmers.g8.1 Deviations from architectural style

process. If the results are somewhere in-between, analiy some cases, the architecture may resemble one of the
ses identify critical components whose resource estcommon architectural styles in many respects but devi-
mates have the greatest effect and focus on obtainingte from the archetype in one or more details. While a
more precise data for them. A variety of techniques cageviation from the classic style does not necessarily

provide more precision, including: further refining the mean that there is a problem, it does indicate an issue
architecture and constructing more detailed models ohat should be explored.

constructing performance prototypes and measuring
resource requirements for key components. For example, an architecture may deviate from the clas-

sic style in a way that obviously negates one or more of
Two types of models provide information for architec-the recognized performance advantages of that architec-
ture assessment: tiseftware execution modehd the tyral style. In those cases, bringing the architecture into
system execution modédlhe software execution model conformance with the style will produce performance
represents key aspects of the software execution behayains. For example, in one assessment, we discovered
ior. Details of the construction and evaluation of thesghat the development team had started with a classic
models may be found in [Smith and Williams 2002] pipe-and-filter architecture but then compromised that

Software execution models are generally sufficient toStyle during prototyping. The result was a monolithic

; . . mplementation in which all of the filters ran within a
identify performance problems due to poor architectural . o . ;
- - : . single process. This limited the scalability of the appli-
decisions [Williams and Smith 1998]. However, in some™_: . .
. cation which was a primary performance goal. Imple-

cases, there may be questions about effects due to con- . i
menting the software so that each filter can run

-6 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

independently (as in the classic pipe-and-filter style)The system under consideration is a data acquisition
improves scalability. system that receives data from multiple sources, formats
.) and translates incoming messages, applies business
3.8.2 Alternative interactions between components jes to interpret and process messages, updates a data
Sometimes, the interaction between two cOmponentgiyre with the data that was received, and prepares data
may be a source of performance problems. In thesg,. 5qgitional downstream processing. The case study is
cases, it may be possible to change the interaction {Qesented here as a generic data acquisition system. It is
improve responsiveness or throughput. For examplggnresentative of many of the applications that we have
using the Coupling Pattern [Smith and Williams 2002]reviewed, including order-processing (e.g., e-com-

Fo match an interface to its most frequent use will Ofter}nerce), stock market data processing, call-detail record
improve performance. processing, payment posting, and ECM data acquisition.

3.8.3 Refactoring to remove an antipattern Management requested an architecture assessment

If a performar_lce antipattgrn is found during the anal_ysi%ecause they were about to commit to a system upgrade
step, refactoring the architecture to remove that antipat;,ose goal was to increase throughput by a factor of

tern will improve performance. ten. While an increase in hardware capacity was consid-

For example, one of the antipatterns that we encount&f€d: @ ten-fold increase in hardware would not be cost-
most frequently is the One-Lane Bridge [Smith and Wil-€fféctive. So, the goal of the assessment was to deter-
liams 2002]. This antipattern arises whenever only on&1in€ whether the existing architecture was adequate to
(or a few) process(es) may proceed because of the nesypport the increased throughput or a new architecture
to wait for a resource (e.g., a database lock or synchrd?@S needed. If the current architecture was deemed ade-

nous call to a single-threaded process). The One-Larfate, then the development team requested that the

Bridge can cause large backlogs that cause wide varassessment team identify opportunities, both strategic

ability in response times. The general solution to thind tactical, for improving performance.
problem is to refactor the software to spread the Ioagl .

: . ; : . .1 Process Overview
either spatially (e.g., by accessing different portions o
the database) or temporally (e.g., by performing work
different times). The specific solution will depend on
the characteristics of the application.

he first PASA step was a briefing for everyone
involved to explain the what we would be doing, what
they needed to provide, what we would do with it, and
what they could expect as a deliverable. The actual pre-

3.9 Presentation of Results sentation is omitted here.

It is important that the PASA client receive a document .
-~ . L o 4.2 The Architecture
containing the mission, findings, specific steps to take) I . .
o ; C The architecture description we received consisted of
the priority of the steps, and their relative importance, - .
users manuals for the system administration features,

The document may be prose or a copy of presentauoa]esign documents for several of the key components,

slides. This increases the likelihood that they will be nd some class diagrams. None of the documents

able to use the results of the assessment and will be a a}c()acused on the most important use case. thev all mixed
to follow-up to quantify the benefit of the activity. P » (NEY

the various functions thus making it difficult to deter-

As noted above, in many cases, modeling is needed fpine exactly what interactions occurred to process mes-
quantify problems and their improvements. Since rapi¢ages received from the data feeds. When asked
feedback is important, in these cases preliminary result§pecifically what processing occurred, participants drew
a|ong with a mode”ng and measurement p|an are prea diagram similar to that in Figure 1 and said that the
sented at the end of the first week. Then, when the modlata is grabbed from the feed, deblocked into individual

eling is complete, a final presentation summarizes all ofessages, passed to the message handler to update state
the findings. and act on the data received, then an output message is

formatted and written for the downstream processes.
4. Example Assessment

This example is drawn from an actual architecture | a2 L . pepocker (—p{ MeSS30e |, Output
assessment. The details have been modified to presenve

confidentiality. In some cases, they have also been sint
plified for presentation.

Figure 1: Architecture Diagram

-7-

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

aMessage ‘ theSensorState‘ ‘ theGIobaIState‘ ‘ theActionTable
T T T

|
|

|

|

|

|

«create» | aninRange |
————— Reading }
|

|

]

]

computeNewStal

v

et

update()

applyBusinesstles()
|

N

Figure 2: Sequence diagram for processing in-range data.

4.3 Use Cases ever team members felt that it should take no more than
Use cases for this application include the data feeds f@0 seconds between the time the message arrives and
the acquisition system, the downstream processes thaten it is transmitted to downstream processes.

use the data, a switching feature that activates redundant

processing systems in case of failure, and system admif-6 Architecture Discussion

istration features. After reviewing the documentation, This step involved several lengthy meetings with mem-
we focused on the use case that takes messages from ks of the development team who could explain partic-
feed, formats them, applies business logic, updates théar details of the current processing. This information
data store, and sends them on for downstream proces¥lowed us to map the processing steps in Figure 2onto
ing. Different use cases deal with different types of datathe processes and threads identified in the initial docu-
The dominant use case is the one that processes an fRentation.

range data reading since these make-up the bulk of t

rBevelopers felt that, in order to cost-effectively achieve
data processed.

a ten-fold increase in throughput, it would be necessary
4.4 Key Performance Scenarios to run more concurrent streams, speed up the current

The key performance scenario deals with processing afj'€ams 0 process more messages, or use a combination
error-free in-range data reading. Figure 2 shows th@f these two approacheBhe team felt that the middle-
sequence diagram for this scenario. ware for passing messages between processes would be

a barrier to scalability, so several discussions focused on
4.5 Performance Objectives the nature of the interactions with the middleware,
The system Currenﬂy processes 2,000 messages per Sgl(lglether it was essential to maintain the current collec-
ond. Management anticipates that the upgraded systefi@n of shared versus non-shared objects, etc.

must handle 20,000 messages per second. The end-%—e also reviewed all available performance measure-

end time to process a message was not specified, hovﬁ'ients for the system. Most of them, however, were

-8-

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

gathered during various focused tuning efforts and it

was not possible to determine the current processing %hb?;i‘f

time for the steps in the scenario, or the portion of the

time spent in the middleware versus the Message opera- %

tionS. Message

4.7 Architecture Analysis %

It became clear from the discussions that the system as State Data
implemented would need some performance improve- Change Reading =
ments in order to achieve the desired throughput. Never- /ﬂ D\
theless, we were able to conclude that the architecture oD

itself was viable for the application, to identify some Reading

clear successes that had been achieved, to identify some /<7 V\
performance antipatterns that should be the focus of

future efforts, and to specify the steps in a more detailed Reading O Reading”
performance benchmarking, measurement, and model-

ing study that would quantify the scalability of the sys- Figure 3: Message Class Hierarchy

tem. These are covered in the following sections.

the container object. This results in extra message
traffic and potentially limits the concurrency in the
system because the Message Handler performs
most of the work.

Unbalanced ProcessirgThe algorithm used to
route messages from the data feed to the appropri-
ate parallel stream caused some of the parallel
streams to be much busier than others. Throughput
is maximized if all streams execute at their maxi-
mum rate.

Unnecessary Processirglhere were several pro-
cessing steps that could potentially be eliminated.

The fundamental conclusion was that, while some per- BOthan Input Message andan Output Message

formance improvements were needed, the current archi- Were logged, but only one was necessary. When a
tecture would be able to support the goal of a ten-fold ~ (temporary) backlog developed, old messages were

4.7.1 Architecture Classification

After reviewing the initial documentation and architec-
ture discussions, it was clear that the overall architecture
is a classic pipe-and-filter style [Shaw and Garlan 1996] ,
in which each stage in the pipeline applies an incremen-
tal transformation to an incoming message before pass-
ing it to the next stage or sending it on for downstream
processing. The current implementation ran 20 streams
(pipelines) concurrently with each stream processing
approximately 100 messages per second to achieve a,
throughput of 2000 messages per second.

increase in throughput. still processed by the system, but they should have
been discarded. Many messages that were not
4.7.2 Performance Antipatterns needed by the system were received and processed

We found several performance antipatterns in the exist- only to be discarded late in the processing.
ing implementation [Smith and Williams 2002], [Smith)
and Williams in preparation]. The presence of thesé -3 Modeling

antipatterns presented significant limits to scalability. S€veral of the issues that were identified required mod-
eling to quantify their impact and as well as the

» Excessive Dynamic AllocatienNew message improvements to be realized from design alternatives. In
objects were created every time a message was this case study, iwas necessary to quantify the scalabil-
received. For example, Figure 2 shows the creationity of the system to precisely determine the hardware
of newlnRangeReading andOutputMessage cost and software changes that would be necessary.

objects. Figure 3 shows the class hierarchy for
messages. This is a deep hierarchy that is likely to We constructed a software performance model from the

result in considerable expense for creation of sequence diagram in Figure 2. A performance bench-
objects at the bottom of the lattice. marking and measurement study was undertaken to
« god Class—TheMessageHandler in Figure 2 determine the resource requirements for the processing

behaves like a god class. It gets data from the othePt€PS in the scenario.

objects (i.e.theSensorState, theGlobalState, the- g first goal was to determine the performance budget
ActionTable), uses the data to determine processings, e stages in the pipe-and-filter architecture. Table 1
requirements, then sends the updated data back tog 4y that average amount of time for each stage is a

-9-

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

Table 1: Performance Objectives

Machines Streams Stream Perfqrmgnce Total
Throughput Objective Throughput
1 1 20 100 0.01 2,000
2 10 20 100 0.01 20,000
3 4 10 500 0.002 20,000
4 4 20 250 0.004 20,000

function of the number of machines, the number of parwork of the system, we cannot easily break it into multi-
allel pipeline streams on each machine, and the througiple stages in a pipe and filter to increase throughput. If it
put of each streanfror example, the first row shows that were redesigned, each processing step in the redesigned
with 20 streams running on one machine and a througtscenario would have 0.004 seconds to complete rather
put of 100 messages per second, each stage must cotinan requiring the entire scenario to complete in that
plete in 0.01 seconds to achieve 2,000 messages pane.

second. Several options are shown for achieving the

desired throughput of 20,000 messages per second€ models showed that the primary problem was not

Option 2 simply solves the problem by adding moreWith the messaging middleware as suspected, but with

hardware (10 machines). Option 3 uses 4 machine%f,‘e excessive processing.in one stage _of the pipgline
reduces the number of pipelines to 10, and increases th¥essage Handler) and with the Excessive Dynamic

throughput of each stream, and so on. We will constructocation.

a model to determine the viability of each alterativeyote that it is possible to get these results from the mea-
for achieving the desired scalability. surements without constructing the software model. We
phave found it useful, however, to construct the model
and use it to explain the current performance of the sys-

dler stage in the pipe and filter because the measurd€M its limitations, and alternatives for improving per-
ments confirmed that it is the step that limits the overalformance. It is much easier to “see” the performance

throughput and scalability. The results of this model ar@Ottlenecks in the diagram than to find them in a table of
- . numbers. (If that were easy, the developers would have
shown in Figure 4. The overall time for théMessage

Handler is under 0.01 seconds as required, and the fir giready identified the problem and corrected). The

- L A séoftware performance model can then be used to evalu-
step takes the majority of this time. The utilization sta—ate different designs for thélessage Handler that
tistics (not shown) matched those measured on the SYfiould enable it to operate in more stages, and to evalu-
tem. Several other models were run under varyin '

Kload intensities t firm that th del It%\te other combinations of machines, streams and
workioad Intensities o confirm that the model resu Sthroughputs to achieve the desired scalability.
matched the system measurements.

We begin by constructing a model of the existing syste
for validation. This model focuses on tilessage Han-

The next step modeled the case in row 4 of Table 1 3-8 Identlflg?tlon_gf Alj[ernatlvesl |) for i
see if the current implementation of thkessage Han- We were able to identify several alternatives for improv-

dler could meet the performance goal of 0.004 seconddd Performance. They are categorized as either strate-
The results in Figure 4 show that the total time wad'c (those that' require a significant amo‘,’”t of work but

0.015 seconds—far greater than the 0.004 seconcﬁ?ve, a potennally large payoff) and tactical (those that
required. The time required to create thRangeRead- require little work but have a smaller payoff).

ing andanOutputMessage (Excessive Dynamic Allo- girategic Improvementsin addition to improvements
cation) are significant problems in meeting this yiscyssed above for removing the Excessive Dynamic
performance objective. Furthermore, becauseMbe- ajiocation and god Class antipatterns, the Unnecessary
sage Handler is a god class and performs most of thepgcessing and the Unbalanced Processing, there were
other opportunities to significantly improve perfor-
mance by applying Performance Principles:

t. The models were constructed and solved using the * Instrumentation Principle-the software should
SPE+ED SPE tool. www.perfeng.com. have additional code to understand and control per-

-10 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

Residence Time: 0.0010 sec Residence Time: 0.0154 sec

doState doState
Calcs 0.0002 Calcs 0.0003
apply
0.0026 Business 0.0037
Rules

determine
Action

o

0.0008

create create
Output 0.0019 Output
Message write Message write
Output 0.0001 Output 0.0001
Message Message
forward forward
Message 0.0001 Message 0.0002
updateAction 0.0002 updateAction 0.0002
(a) Current Implementation (b) Option 4 Results

Figure 4: Model Results

formance. It was impossible to determine the 4.10 Summary
resource requirements for critical processing steps The architecture assessment was successful. It docu-
without the special benchmarking and measurementnented the overall end-to-end processing for messages
study. It is vital to quantify the resource demand of in the current architecture. It determined that the current
processing steps to better understand and control architecture was viable for achieving the desired scal-
performance; to identify bottlenecks and quantify ability. It identified problem areas that required correc-
proposed tactical improvements for effective priori- tion in order to achieve the desired scalability, and
ties on implementation, and establish performance quantified the alternatives so that developers could
budgets for stages in the pipeline. select the most cost-effective solution. They ultimately
» Spread-the-Load Principtemonitor and control implemented the changes and were able to meet their
the scheduling of messages to parallel streams, throughput goals.
purge aged messages, and filter unnecessary mes-

sages. 5. Conflicts and Tradeoffs

Tactical ImprovementsOther Performance Patterns Software performance is not achieved in isolation. Per-

could also be applied to immediately improve systenformance objectives must be balanced with other soft-
throughput: ware quality concerns including: reliability/availability,

) _ safety and modifiability. Sometimes, these objectives

* Slender Cyclic FunctiorsRemove all unnecessary conflict when architectural features have opposing
processing from the critical path, and allocate pro- effects on different quality attributes. For example,

cessing that can be performed off the critical path toredundancy may increase availability but negatively

other concurrent processes . impact performance. Identifying the areas of the archi-

* Batching—Reduce processing by getting a batch of tecture where conflicts occur and quantifying their

messages to process rather than one atatime effects makes it possible to find a workable compro-

. mise.
4.9 Presentation of Results

A preliminary presentation discussed the proposeg\s with performance objectives, in order to evaluate the
improvements and outlined a plan for the measuremengffect of architectural decisions on qualities such as
and modeling steps. Once the modeling phase was comodifiability or reliability, it is important that the
plete, a final presentation summarized all the findingsequirements for these attributes be stated precisely.
and recomendations. Evaluating tradeoffs also requires that quality require-
ments be prioritized. Obtaining precise quality require-

-11 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

ments and prioritizing them is often the most difficult and Performance (WOSP9&anta Fe, NM,
part of the process. October, 1998, pp. 178-190.

6. S dc lusi [Booch, et al. 1999] G. Booch, J. Rumbaugh, and I.
- summary an onclusions JacobsonThe Unified Modeling Language User

The architecture of a software system is the primary fac- Guide Reading, MA, Addison-Wesley, 1999.

tor in determining whether or not a system will meet itS[Brown et al. 1998] W. J. Brown, R. C. Malveau, H
performance and other quality goals. Architecture’ "\ ’McCc;rmick I (':m('j T3 h)loWbréy T
assessment is a vital step in the creation of new systems "o v Ref:';lctoriné Software. Architectures

and the_ evaluation of the viability of I_egacy systems for and Projects in CrisisNew York, John Wiley and
controlling the performance and quality of systems. Sons. Inc.. 1998

This paper presented PASA, a method for performanc&;uschmann’ etal. 1996] F. Buschmann, R. Meunier,
assessment of software architectures. It described the | Rohnert, P. Sommerlad, and M. Seattern-
method we use in a variety of application domains Qyriented Software Architecture: A System of

including web-based system, financial applications, and paiterns Chichester, England, John Wiley and
real-time systems. It described the nine steps in the gons 1996.

method:)
[Cortellesa and Mirandola 2000] V. Cortellesa and R.
1. Process Overview Mirandola, “Deriving A Queueing Network-based
; ; Performance Model from UML Diagrams,”
2. Architecture Overview . ' K
Proceedings of the Second International Workshop
3. ldentification of Critical Use Cases on Software and Performance (WOSP2000)
)) Ottawa, Canada, September, 2000, pp. 58-70.
4. Selection of Key Performance Scenarios
[Clements and Northrup 1996] P. C. Clements and L.
5. ldentification of Performance Objectives M. Northrup, "Software Architecture: An
. . . . Executive Overview," Technical Report No. CMU/
6. Architecture Clarification and Discussion SEI-96-TR-003, Carnegie Mellon University,
P - Dowdy, et al. 1984] Lawrence W. Dowdy, Derek L.
8. Identification of Alternatives [
Eager, Karen D. Gordon and Lawrence V. Saxton,
9. Presentation of Results “Throughput Concavity and Response Time
Convexity,” Information Processing Lettersol.
A case study based on an actual performance assess- 19 no. 4, pp. 209-212, 1984.

ment of a system architecture illustrated the steps in the)
method as well as typical findings for such an assesdFager and Sevcik 1983] Derek L. Eager and Kenneth
ment. C. Sevcik, “Performance Bound Hierarchies for

Queueing Networks,Transactions On Computer
The PASA method is evolving as we gain more experi- Systemsol. 1, no. 2, pp. 99-115, 1983.
ence on a variety of applications. With this experience
we are discovereing and documenting new Performanc@amma' et "?‘I‘ .1995] E Gamma, R_' Helm, R. Johnson,
Antipatterns [Smith and Williams in preparation]. We and J. VI|55|d_ed:)e5|gn Patterns: Elemgnts of
are also currently codifying the results from multiple Reu_sable Object-Oriented SoftwaReading, MA,
similar assessments into some general observations Addison-Wesley, 1995.
about the applicability of architectural styles to particu-[Grahn and Bosch 1998] H. Grahn and J. Bosch, "Some

lar types of applications [Williams and Smith in prepa- Initial Performance Characteristics of Three

ration]. Architectural Styles,Proceedings of the First
International Workshop on Software and

7. References Performance (WOSP98%anta Fe, NM, October,

[Balsamo, et al. 1998] S. Balsamo, P. Inverardi, and C. 1998, pp. 197-198.

Mangano, "An Approach to Performance [Hsieh and Lam 1987] Ching-Tarng Hsieh and Simon
Evaluation of Software Architecture®foceedings S. Lam, “Two Classes of Performance Bounds for
of the First International Workshop on Software Closed Queueing Networkserformance

Evaluation vol. 7, no. 1, pp. 3-30, 1987.

-12 -

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

[Kazman, et al. 1998] R. Kazman, M. Klein, M.
Barbacci, T. Longstaff, H. Lipson, and J. Carriere,
"The Architecture Tradeoff Analysis Method,"
Proceedings of the Fourth International
Conference on Engineering of Complex Computer
Systems (ICECCS98)ugust, 1998.

[Kazman, et al. 1996] R. Kazman, G. Abowd, L. Bass,
and P. Clements, "Scenario-Based Analysis of
Software Architecture [EEE Softwarevol. 13, no.

6, pp. 47-55, 1996.

[Klein and Kazman 1999] M. Klein and R. Kazman,
"Attribute-Based Architectural Styles," Technical
Report No. CMU/SEI-99-TR-022, Software
Engineering Institute, Carnegie-Mellon University,
Pittsburgh, PA, October, 1999.

[Lathi, et al. 1997] Johannes Lithi, Shikharesh
Majumdar, Gabriele Kotsis, and Glnter Haring,
“Performance Bounds for Distributed Systems with
Workload Variabilities and Uncertaintiesarallel
Computingvol. 22, no. 13, pp. 1789-1806, 1997.

[Majumdar, et al. 1991] Shikharesh Majumdar, C.
Murray Woodside, J. E. Neilson and Dorina C.
Petriu, “Performance Bounds for Concurrent
Software with RendezvouBgrformance
Evaluation vol. 13, no. 4, pp. 207-236, 1991.

[Pooley and King 1999] R. Pooley and P. King, “The
Unified Modeling Language and Performance

[Smith and Williams 2002] C. U. Smith and L. G.

Williams, Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software
Reading, MA, Addison-Wesley, 2002.

[Smith and Williams 2000] C. U. Smith and L. G.

Williams, "Software Performance Antipatterns,”
Proceedings of the Second International Workshop
on Software and Performance (WOSP2000)
Ottawa, Canada, September, 2000, pp. 127-136.

[Smith and Williams 1998] C. U. Smith and L. G.

Williams, "Performance Engineering Evaluation of
CORBA-based Distributed Systems wBREEDR"

in Computer Performance Evaluatidrecture

Notes in Computer Scienosl. 1469, R. Puigjaner,
N. N. Savino and B. Serra, ed., Berlin, Springer-
Verlag, 1998, pp. 321-335.

[Smith and Williams 1997] C. U. Smith and L. G.

Williams, "Performance Engineering Evaluation of
Object-Oriented Systems with SPEED," in
Computer Performance Evaluation: Modelling
Techniques and Toglsecture Notes in Computer
Sciencevol. 1245, R. Marie, B. Plateau, M.
Calzarossa and G. Rubino, ed., Berlin, Springer-
Verlag, 1997, pp. 135-154.

[Smith 1990] C. U. SmithPerformance Engineering of

Software SystemReading, MA, Addison-Wesley,
1990.

Engineering,” IEE Proceedings-Software, vol. 146, [Stephens and Dowdy 1984] Lindsey E. Stephens and

no. 1, pp. 2-10, 1999.

[Schmidt, et al. 2000] D. Schmidt, M. Stal, H. Ronert,
and F. Buschman®attern-Oriented Software
Architecture Volume 2: Patterns for Concurrent and
Networked ObjectChichester, England, John
Wiley and Sons, 2000.

[Shaw and Garlan 1996] M. Shaw and D. Garlan,
Software Architecture: Perspectives on an
Emerging DisciplingeUpper Saddle River, NJ,
Prentice Hall, 1996.

[Smith and Williams in preparation] C. U. Smith and L.
G. Williams, “New Software Performance
Antipatterns,” manuscript in preparation.

-13 -

Lawrence W. Dowdy, “Convolutional Bound
Hierarchies,” SIGMETRICS, pp. 120-133, 1984

[Williams and Smith 1998] L. G. Williams and C. U.

Smith, "Performance Evaluation of Software

Architectures,'Proceedings of the Workshop on

Software and Performance (WOSP3Banta Fe,
NM, October, 1998.

[Williams and Smith in preparation] L. G. Williams

and C. U. Smith, “Performance Characteristics of
Common Architectural Styles: Pipe-and-Filter and
Client-Server,” manuscript in preparation.

© Copyright 2002, Software Engineering Research and Performance Engineering Services. All rights reserved.

