
New Software Performance AntiPatterns:
More Ways to Shoot Yourself in the Foot

Performance antipatterns document common software performance problems as well as
their solutions. These problems are often introduced during the architectural or design
phases of software development, but not detected until later in testing or deployment. Solu-
tions usually require software changes as opposed to system tuning changes. This paper
presents three new performance antipatterns and gives examples to illustrate them. These
antipatterns will help developers and performance engineers avoid common performance
problems.

Connie U. Smith
Performance Engineering Services

PO Box 2640
Santa Fe, New Mexico, 87504-2640

(505) 988-3811
http://www.perfeng.com/

Lloyd G. Williams
Software Engineering Research

264 Ridgeview Lane
Boulder, Colorado 80302

(303) 938-9847
boulderlgw@aol.com

Copyright © 2002, Performance Engineering Services and Software Engineering Research. All rights reserved.
1.0 INTRODUCTION
Architectural and design patterns document common
solutions to frequently-occurring software develop-
ment problems [Schmidt, et al. 2000], [Buschmann, et
al. 1996], [Gamma, et al. 1995]. These patterns cap-
ture expert knowledge about “best practices” in soft-
ware design by documenting general solutions that
may be customized for a particular context. They make
it possible to reuse that knowledge in the development
of many different types of software.

Antipatterns [Brown, et al. 1998] are conceptually simi-
lar to patterns in that they document recurring solutions
to common design problems. They are known as anti-
patterns because their use (or misuse) produces nega-
tive consequences. Antipatterns document common
mistakes made during software development as well as
their solutions. Thus, antipatterns tell you what to avoid
and how to fix the problem when you find it. Like pat-
terns, antipatterns address both software architecture
and design issues. Antipatterns may apply to the soft-
ware development process itself, as well.

Antipatterns are refactored (restructured or reorga-
nized) to overcome their negative consequences. A
refactoring is a correctness-preserving transformation
that improves the quality of the software. For example a
data structure may be revised to improve the efficiency
of the retrieval processing. The transformation does not
alter the semantics of the application but it would
improve performance. Refactoring may be used to
enhance many different quality attributes of software,
including: reusability, maintainability, and, of course,

performance. Refactoring is discussed in detail in
[Fowler 1999].

Recently, we introduced software performance patterns
and antipatterns [Smith and Williams 2002]. Perfor-
mance patterns describe “best practices” for develop-
ing responsive, scalable software. Architectural and
design patterns focus on quality attributes such as
reusability or modifiability rather than performance.
Performance patterns extend the notion of patterns to
explicitly include performance considerations.

Performance antipatterns document common perfor-
mance mistakes made in software architectures or
designs. They may also have negative impacts on
other quality attributes, such as reusability or modifi-
ability, but they are not addressed here. Our experience
is that developers find antipatterns to be especially
useful because they illustrate how to identify a bad situ-
ation and provide a way to rectify the problem. This is
particularly important for performance because good
performance is the absence of problems. Thus, by illus-
trating performance problems and their causes, perfor-
mance antipatterns help build performance intuition in
developers.

In [Smith and Williams 2002], [Smith and Williams
2001], and [Smith and Williams 2000] we introduced
several software performance antipatterns. This paper
describes three new performance antipatterns that
were identified through our experienced in performing
performance assessments of software architectures
[Williams and Smith 2002]. Each of the antipatterns is

described in the following sections using this standard
template:

• Name: the section title
• Problem: What is the recurrent situation that

causes negative consequences?
• Solution: How do we avoid, minimize or refactor

the antipattern?

This paper also includes a summary of known perfor-
mance antipatterns as a reference.

2.0 RELATED WORK
Antipatterns are derived from work on patterns. As
noted in the introduction, this work is aimed at captur-
ing expert software design knowledge. There is a large
body of published work on patterns including [Gamma,
et al. 1995], [Buschmann, et al. 1996], and [Schmidt, et
al. 2000]. While there is occasional mention of perfor-
mance considerations in the work on patterns, the prin-
cipal focus is on other quality attributes, such as
modifiability and maintainability.

Meszaros [Meszaros 1996] presents a set of patterns
that address capacity and reliability in reactive systems
such as telephony switches. Petriu and Somadder [Pet-
riu and Somadder 1997] extend these patterns for use
in identifying and correcting performance problems in
distributed layered client-server systems with multi-
threaded servers.

As noted above, several performance patterns and
antipatterns were presented in [Smith and Williams
2002], [Smith and Williams 2001], and [Smith and Will-
iams 2000]. This paper presents new antipatterns iden-
tified since that work was published.

Dugan and co-workers describe the Sisyphus Data-
base Retrieval Performance Antipattern [Dugan, et al.
2002]. That antipattern is a special case of The Ramp
antipattern, as discussed later in this paper.

3.0 UNBALANCED PROCESSING
Concurrent processing has the potential to improve the
scalability of software systems. The potential scalability
is not realized, however, unless the concurrent steps do
not have to wait for other processing to complete.
Imagine waiting in an airline check-in line. Multiple
agents can speed-up the process but, if a customer
needs to change an entire itinerary, the agent serving
him or her is tied-up for a long time making those
changes. With this agent (processor) effectively
removed from the pool for the time required to service
this request, the entire line moves more slowly and, as
more customers arrive, the line becomes longer.

3.1 Problem
The Unbalanced Processing Antipattern has several
manifestations:

3.1.1 Concurrent processing systems
Unbalanced Processing occurs when processes can-
not make effective use of available processors either
because processors are dedicated to other tasks or
because of single-threaded code. This manifestation
has available processors and we need to ensure that
the software is able to use them.

3.1.2 “Pipe and Filter” Architectures
The throughput of the overall system is determined by
the slowest filter. For example, in the travel analogy,
passengers must go through several stages (or filters):
first check in at the ticket counter, then pass through
security, then go through the boarding process. Recent
events have caused each stage to go more slowly. The
security stage tends to be the slowest filter these days.
Note that in this type of system we are primarily con-
cerned with throughput.

3.1.3 Extensive processing
This situation is analogous to the itinerary-change
example. It occurs when a long running process
monopolizes a processor. The processor is removed
from the pool, but unlike the pipe and filter example,
other work does not have to pass through this stage
before proceeding. This is particularly problematic if
the extensive processing is on the processing path that
is executed for the most frequent workload. In this type
of system we are primarily interested in the residence
time, however we are also interested in throughput.
That is, customer satisfaction improves with shorter
waits.

3.2 Solution
There are three possible solutions to problems intro-
duced by Unbalanced Processing depending on the
manifestation of the problem. Because both the prob-
lem and the solutions involve contention effects, mod-
els are required to evaluate the overall effect of the
solution in each case.

3.2.1 Concurrent processing
If the problem is due to single-threading work, use per-
formance models to find alternatives that either create
multi-threaded tasks or use multiple copies of the pro-
cess that can execute concurrently. When the problem
is due to dedicating processors to specific tasks, use
system execution models to quantify the net effect of
the assignment. Note that this is not so much a soft-
ware design issue as a system tuning issue.

Figure 1 illustrates a system with a routing algorithm
based on static properties that results in more work
going to one queue than others. The solution is to use
a dynamic algorithm that routes work to queues based
on the work requirements and the system congestion.

3.2.2 “Pipe and Filter” Architectures
Use models to determine the processing requirements
of each stage:

• divide long processing steps into multiple,
smaller stages

• combine short processing steps to minimize
context switching overhead and other delays for
shared resources

Figure 2 illustrates an execution graph with Unbal-
anced Processing due to stages or filters of unmatched
sizes. The shading for each processing step shows its
relative processing time—light shading reflects small
processing time whereas the dark shading shows large
processing requirements. The solution is to divide long
filters into multiple steps that can execute in parallel
and combine short steps into one.

3.2.3 Extensive processing
Identify processing steps that may cause slow downs
and delegate those steps to processes that will not
impede the Fast Path. This is analogous to setting up
special lines for checking baggage (the Fast Path) ver-
sus issuing tickets or changing itineraries.

4.0 UNNECESSARY PROCESSING
Unnecessary processing is like any other unnecessary
work—it keeps you from doing what is really important.

4.1 Problem
Unnecessary processing is processing that is executed
but is either not needed, or not needed at that time.

This is also particularly problematic if the unnecessary
processing is on the processing path that is executed
for the most frequent workloads.

In one system a step at the beginning of the processing
wrote a copy of the inbound message to a log. The last
step in the processing wrote a copy of the transformed
message to a log just before forwarding it to a down-
stream system. The logging of the outbound message
was unnecessary because it could be re-created from
the inbound message if necessary. Figure 3 illustrates
this unnecessary processing.

The logging step was implemented by issuing an
update to a database. It was also Unnecessary Pro-

Figure 1: Unbalanced Processing Due To
Routing Algorithm

Processor

Processor

Processor
Figure 2: Unbalanced Processing in a

Pipe and Filter architecture.

Figure 3: Unnecessary Processing to Log
Output Messages

Combine

Reduce processing
requirements

logInput
Message

process
Step1

process
Step2

process
Step3

logOutput
Message

cessing to wait for the update to complete before pro-
ceeding because the detection and correction of
update problems could be done on a different execu-
tion path. The results of the update were not required
for processing other input messages.

In the same system, it was possible for the inbound
messages to experience backlogs periodically when
the time to process the message exceeded the time
between arrivals of new work. Unnecessary Process-
ing was executed because each queued message was
still processed even though it was later discarded due
to the staleness of the data.

4.2 Solution
Sometimes Unnecessary Processing can be corrected
by simply deleting the associated processing steps. In
the case of the redundant logging of the output mes-
sage, that step could just be deleted. If it is essential to
be able to recreate the output message, however, new
code may be needed to perform that function. Because
the function would be needed infrequently, there is a
net savings in processing time.

Another solution is to re-order processing steps. For
example, we should detect earlier in the processing
that results are not needed due to stale input data,
before Unnecessary Processing has executed.

A third solution is to restructure the processes and del-
egate Unnecessary Processing to a background task
rather than execute it on the most frequent execution
path. For example, we could generate an asynchro-
nous call to update the data base, and route exception
handling to a different process.

5.0 THE RAMP
(Note: This antipattern was first brought to our attention
by a CMG 2001 attendee.)

Have you ever used a system that exhibited good
response time early in the day but, as time went on,
became slower and slower? If so, you’ve probably
experienced The Ramp. When this antipattern is
present, processing time increases as the system is
used. Figure 4 illustrates the effect of The Ramp on
processing time. Note that, as the processing time
increases, response time increases exponentially.

5.1 Problem
The Ramp can arise in several different ways. Any situ-
ation in which the amount of processing required to
satisfy a request increases over time will produce the
behavior illustrated in Figure 4.

For example, consider a list of daily customer requests.
Each time a request arrives, the list is searched to

make sure that the request is not a duplicate. At the
beginning of the day, the list is small and a sequential
search provides adequate response times. As the day
goes on, however, the list grows and the time required
to perform the search becomes unacceptable.

Another common example of The Ramp appears in
Web searches. When you perform a search on the
Web, only a subset of the results (typically 20) is pre-
sented. To see the next subset you select an option to
view more. The Ramp occurs because each time you
request a new subset, the search is performed again,
the result is searched to find the required subset (e.g.,
results 41–60) and the rest are discarded. As you
request more results, the search for the correct subset
takes longer, reducing response time. This example of
The Ramp is the one addressed in the Sisyphus Data-
base Retrieval Performance Antipattern [Dugan, et al.
2002].

The Ramp presents a scalability problem that is often
not detected during testing since test data often does
not contain enough items to reveal the phenomenon.

5.2 Solution
The solution to The Ramp is to keep the processing
time from increasing dramatically as the data set
grows. Possible solutions include:

• Select a search algorithm that is appropriate for
the larger amount of data—it may be suboptimal
for small sizes, but it shouldn’t hurt to do extra
work then.

• Automatically invoke self-adapting algorithms
based on size

• When the size increases more gradually, use
instrumentation to monitor the size and upgrade
the algorithm at predetermined points

As with other performance antipatterns, The Ramp is
particularly problematic when it occurs on the Fast
Path. If the code is not executed frequently then it may
not have a significant affect on performance. Therefore,
in addition to monitoring the number of items you

Figure 4: The Ramp

P
ro

ce
ss

in
g

T
im

e

Time

should also track the number of times the code exe-
cutes to determine when corrective action is needed.

Dugan, et al. [Dugan, et al. 2002] present quantitative
analyses for several alternative search algorithms for
the special case illustrated by the Web search exam-
ple. They are: using additional indexing to restrict the
search, upper and lower bounds on the search,
sequence numbers for items in the list, and caching.

In general, the response time improvement depends on
the size of the data set, the amount of time required to
process an individual item, and the arrival rate for quer-
its. The relationship is:

where RT is the response time, n is the number of
items in the data set, s is the amount of service time

required to process a single item, is the slope of the

ramp, and X is the arrival rate for queries.

It is important to identify these scalability problems as
early as possible. Models are an important tool for
identifying when you have The Ramp since, as noted
above, test data sets are typically not large enough to
reveal its presence. Also, by the time you’ve found The
Ramp with test data, it may be too late or too expensive
to do anything about it. A model will allow you to quan-
tify the effect of The Ramp and determine the point at
which performance problems will occur.

6.0 MORE IS LESS
.(Note: This antipattern was first brought to our atten-
tion by Rick Boyer [Boyer 2002].) We briefly review it
here so that this paper can provide a compendium of
all known performance antipatterns.

You’ve probably noticed times when the harder you
worked the less you accomplished. This antipattern
addresses the situation when we try to do too much on
computer systems and they end up thrashing rather
than accomplishing useful work.

6.1 Problem
More is Less used to be primarily a memory problem.
Trying to run too many programs over time causes
them to do too much paging and systems spend all
their time servicing page faults rather than processing
requests. Now, particularly in distributed systems, there
are more causes.They include:

• Creating too many database connections
• Allowing too many internet connections

• Creating too many pooled resources
• Allowing too many concurrent streams relative

to the number of available processors

6.2 Solution
Computer systems have diminishing returns due to
contention for resources. Therefore, the solution is to
quantify the point when resource contention exceeds
an acceptable threshold. Models or measurement
experiments can identify these points.

One way to reduce problems created by too many
threads is to use a single thread to perform background
processing [Larman and Guthrie 2000]. The thread
maintains a priority queue of command objects that
perform various background tasks. Each command
object has a polymorphic execute() operation (see the
Command pattern in [Gamma, et al. 1995]). This elimi-
nates the need to have a separate thread for each
background task.

While setting limits on concurrency can be a simple
tuning solution, there are other situations when this
phenomenon may dictate whether an architecture is
appropriate for a software application. For example, if a
system requires 200 parallel streams to achieve its
message throughput, but the system can only support
100 database connections before thrashing occurs,
then the system will require a different architecture that
achieves throughput without so many parallel streams.

7.0 USE OF PERFORMANCE ANTIPATTERNS
These software Performance Antipatterns have four
primary uses: identifying problems, focusing on the
right level of abstraction, effectively communicating
their causes to others, and prescribing solutions. Each
of these is discussed in the following paragraphs.

The primary benefit of software Performance Antipat-
terns is to easily identify potential problems in software
architectures and designs as early as possible in devel-
opment when they can be easily corrected. We use
them extensively as part of our Performance Assess-

ment of Software Architectures (PASASM) approach
[Williams and Smith 2002].

Because these performance antipatterns occur fre-
quently, it is easy to find them. You still need to quantify
execution characteristics, such as the arrival rate of
requests or processing time requirements, to deter-
mine whether it limits scalability or if they are within
scalability targets. For example, you may find The
Ramp, but if you only execute it twice a day it won’t
pose the same problem that it will if it executes on the
Fast Path millions of times a day.

RT
n

td
ds s

1 X n
td

ds s
 –

--------------------------------=

td
ds

The Performance Antipatterns help to focus on the right
level of abstraction by identifying the fundamental prob-
lem and its solution rather than a specific “fix” that
might be outdated over time. For example, long ago an
optimal blocksize for files was 2048 bytes. Unfortu-
nately, even though that has changed, developers may
continue to use that block size because they remember
the specific solution rather than the general concept.
Antipatterns focus on the concept and a general solu-
tion rather than a specific “fix.”

It is also much easier to grasp the concept of Unbal-
anced Processing than to understand pages of model-
ing or measurement results because the concept is a
much higher level of abstraction. In addition, it is much
easier to understand the significance of the quantitative
data after you have grasped the essence of the under-
lying problem with a performance antipattern.

The Performance Antipatterns provide an easy way to
communicate what the problem is and why it is a prob-
lem. A simple analogy from electrical engineering
would be using examples of series and parallel circuits
(i.e., patterns) to illustrate how to build proper circuits
and an example of a short circuit (i.e., an antipattern) to
show what to avoid. Feedback from students in our
classes indicates that both types of example are
needed to instill performance intuition.

The solutions to these antipatterns embody sound,
well-accepted performance principles [Smith and Will-
iams 2002]. These performance principles are similar
to architectural or design patterns [Gamma, et al.
1995], [Buschmann, et al. 1996], [Schmidt, et al. 2000]
in that they capture “best practices” for creating quality
software. They complement architectural and design
patterns by providing guidelines for creating responsive
software. The antipatterns presented here connect per-
formance principles to solutions to commonly occurring
performance problems.

8.0 SUMMARY AND CONCLUSIONS
Performance antipatterns document common perfor-
mance mistakes made in software architectures or
designs. The use of Software Performance Antipat-
terns has proven to be valuable in detecting and cor-
recting performance problems as well as building
performance intuition in developers.

This paper has presented three previously unreported
performance antipatterns and reviewed two others that
have appeared recently. The table below summarizes
all these antipatterns along with those described in
[Smith and Williams 2002] for reference.

Antipattern Problem Solution

Unbalanced Processing Occurs when processing cannot make
use of available processors, the slow-
est filter in a “pipe and filter” architec-
ture causes the system to have
unacceptable throughput, or when
extensive processing in general
impedes overall response time.

1) Restructure software or change
scheduling algorithms to enable con-
current execution. 2) Break large filters
into more stages and combine very
small ones to reduce overhead. 3)
Move extensive processing so that it
doesn’t impede high traffic or more
important work.

Unnecessary Processing Occurs when processing is not needed
or not needed at that time.

Delete the extra processing steps, re-
order steps to detect unnecessary
steps earlier, or restructure to delegate
those steps to a background task.

The Ramp Occurs when processing time
increases as the system is used.

Select algorithms or data structures
based on maximum size or use algo-
rithms that adapt to the size.

Sisyphus Database Retrieval Per-
formance Antipattern [Dugan, et al.
2002]

Special case of The Ramp. Occurs
when performing repeated queries that
need only a subset of the results.

Use advanced search techniques that
only return the needed subset.

More is Less [Boyer 2002] Occurs when a system spends more
time “thrashing” than accomplishing
real work because there are too many
processes relative to available
resources.

Quantify the thresholds where thrash-
ing occurs (using models or measure-
ments) and determine if the
architecture can meet its performance
goals while staying below the thresh-
holds.

9.0 REFERENCES

[Boyer 2002] R. Boyer and G. Rogers, “The More is
Less Antipattern” private communication. Paper in
development.

[Brown, et al. 1998] W. J. Brown, R. C. Malveau, H. W.
McCormick III, and T. J. Mowbray, AntiPatterns:
Refactoring Software, Architectures, and Projects
in Crisis, New York, John Wiley and Sons, Inc.,
1998.

[Buschmann, et al. 1996] F. Buschmann, R. Meunier,
H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
Oriented Software Architecture: A System of Pat-
terns, Chichester, England, John Wiley and Sons,
1996.

[Dugan, et al. 2002] R. F. Dugan Jr., E. P. Glinert, A.
Shokoufandeh, “The Sisyphus Database Retrieval
Performance Antipattern,” Proceedings of the
Workshop on Software and Performance (WOSP
2002), Rome, July 2002.

[Fowler 1999] M. Fowler, Refactoring: Improving the
Design of Existing Code, Reading, MA, Addison-
Wesley Longman, 1999.

[Gamma, et al. 1995] E. Gamma, R. Helm, R.
Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software,
Reading, MA, Addison-Wesley, 1995.

[Larman and Guthrie 20 0 0]C. Larman and R. Guthrie,
Java 2 Performance and Idiom Guide, Upper Sad-
dle River, NJ, Prentice Hall, 2000.

[Meszaros 1996] G. Meszaros, “A Pattern Language
for Improving the Capacity of Reactive Systems,”
in Pattern Languages of Program Design 2, J. M.
Vlissides, J. O. Coplein and N. L. Kerth, ed.,
Reading, MA, Addison-Wesley, 1996, pp. 575-
591.

[Petriu and Somadder 1 9 9 7]D. Petriu and G. Somad-
der, “A Pattern Language For Improving the
Capacity of Layered Client/Server Systems with
Multi-Threaded Servers,” Proceedings of
EuroPLoP'97, Kloster Irsee, Germany, July, 1997.

[Schmidt, et al. 2000] D. Schmidt, M. Stal, H. Ronert,
and F. Buschmann, Pattern-Oriented Software
Architecture Volume 2: Patterns for Concurrent

“god” Class [Smith and Williams 2002] Occurs when a single class either 1)
performs all of the work of an applica-
tion or 2) holds all of the application’s
data. Either manifestation results in
excessive message traffic that can
degrade performance.

Refactor the design to distribute intelli-
gence uniformly over the application’s
top-level classes, and to keep related
data and behavior together.

Excessive Dynamic
Allocation [Smith and Williams 2002]

Occurs when an application unneces-
sarily creates and destroys large num-
bers of objects during its execution.
The overhead required to create and
destroy these objects has a negative
impact on performance.

1) “Recycle” objects (via an object
“pool”) rather than creating new ones
each time they are needed. 2) Use the
Flyweight pattern to eliminate the need
to create new objects.

Circuitous Treasure Hunt [Smith and
Williams 2002]

Occurs when an object must look in
several places to find the information
that it needs. If a large amount of pro-
cessing is required for each “look,” per-
formance will suffer.

Refactor the design to provide alterna-
tive access paths that do not require a
Circuitous Treasure Hunt (or to reduce
the cost of each “look”).

One-Lane Bridge [Smith and Williams
2002]

Occurs at a point in execution where
only one, or a few, processes may con-
tinue to execute concurrently (e.g.,
when accessing a database). Other
processes are delayed while they wait
for their turn.

To alleviate the congestion, use the
Shared Resources Principle to mini-
mize conflicts.

Traffic Jam [Smith and Williams 2002] Occurs when one problem causes a
backlog of jobs that produces wide
variability in response time which per-
sists long after the problem has disap-
peared.

Begin by eliminating the original cause
of the backlog. If this is not
possible, provide sufficient processing
power to handle the worst-case load.

Antipattern Problem Solution

and Networked Objects, Chichester, England,
John Wiley and Sons, 2000.

[Smith and Williams 2002] C. U. Smith and L. G. Will-
iams, Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software, Boston,
MA, Addison-Wesley, 2002.

[Smith and Williams 2001] C. U. Smith and L. G. Will-
iams, “Software Performance AntiPatterns: Com-
mon Performance Problems and Their Solutions,”
Proc. CMG, Anaheim, December 2001.

[Smith and Williams 20 0 0]C. U. Smith and L. G. Will-
iams, “Software Performance Antipatterns,” Pro-
ceedings of the Second International Workshop
on Software and Performance (WOSP2000),
Ottawa, Canada, September, 2000, pp. 127-136.

[Williams and Smith 2002] “L. G. Williams and C. U.

Smith, “PASASM: A Method for the Performance
Assessment of Software Architectures,” Proceed-
ings of the Workshop on Software and Perfor-
mance (WOSP 2002), Rome, July 2002.

